Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Nov;133(3):781-9.
doi: 10.1016/s1095-6433(02)00208-8.

Water balance in desert Drosophila: lessons from non-charismatic microfauna

Affiliations
Review

Water balance in desert Drosophila: lessons from non-charismatic microfauna

Allen G Gibbs. Comp Biochem Physiol A Mol Integr Physiol. 2002 Nov.

Abstract

Water stress is a particularly important problem for insects and other small organisms in arid environments. Cactophilic fruit flies in the genus Drosophila have invaded deserts on numerous occasions, including multiple independent invasions of North American deserts. Because the evolutionary history of this genus is so well studied, we can investigate the mechanisms of adaptation in a rigorous phylogenetic context. As expected, desert fruit flies lose water less rapidly than their mesic congeners. They are also able to tolerate the loss of a greater percentage of body water, but this difference is mainly due to phylogenetic history, and does not represent an adaptation specifically to desert habitats. A laboratory analogue of desert Drosophila is provided by populations of D. melanogaster that have been subjected to selection for desiccation resistance. Selected populations resemble desert species in that they lose water slowly, relative to control populations, and are not more tolerant of dehydration stress. They differ, however, in having much higher water contents and different behavioral responses to desiccating conditions. Our comparisons of laboratory and natural populations reveal that not all possible adaptive mechanisms evolve in stressful environments. Different physiological and behavioral strategies may evolve depending upon the particular options available in the environment.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources