Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar;284(3):C729-37.
doi: 10.1152/ajpcell.00166.2002. Epub 2002 Nov 20.

Localization of Na+-HCO-3 cotransporter (NBC-1) variants in rat and human pancreas

Affiliations
Free article

Localization of Na+-HCO-3 cotransporter (NBC-1) variants in rat and human pancreas

Hiroaki Satoh et al. Am J Physiol Cell Physiol. 2003 Mar.
Free article

Abstract

Mutations in Na(+)-HCO(3)(-) cotransporter (NBC-1) cause proximal renal tubular acidosis (pRTA) associated with ocular abnormalities. One pRTA patient had increased serum amylase, suggesting possible evidence of pancreatitis. To further delineate a link between NBC-1 inactivation and pancreatic dysfunction, immunohistochemical analysis was performed on rat and human pancreas using antibodies against kidney-type (kNBC-1) and pancreatic-type (pNBC-1) transporters. In rat pancreas, the anti-pNBC-1 antibody labeled acinar cells and both apical and basolateral membranes of medium and large duct cells. In human pancreas, on the other hand, the anti-pNBC-1 antibody did not label acinar cells, although it did label the basolateral membranes of the entire duct system. The labeling by anti-kNBC-1 antibody was detected in only a limited number of rat pancreatic duct cells. To examine the effects of pRTA-related mutations, R342S and R554H, on pNBC-1 function, we performed functional analysis and found that both mutants had reduced transport activities compared with the wild-type pNBC-1. These results indicate that pNBC-1 is the predominant variant that mediates basolateral HCO(3)(-) uptake into duct cells in both rat and human pancreas. The loss of pNBC-1 function is predicted to have significant impact on overall ductal HCO(3)(-) secretion, which could potentially lead to pancreatic dysfunction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources