Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov-Dec;42(6):1347-57.
doi: 10.1021/ci025580t.

Prediction of protein retention times in anion-exchange chromatography systems using support vector regression

Affiliations

Prediction of protein retention times in anion-exchange chromatography systems using support vector regression

Minghu Song et al. J Chem Inf Comput Sci. 2002 Nov-Dec.

Abstract

Quantitative Structure-Retention Relationship (QSRR) models are developed for the prediction of protein retention times in anion-exchange chromatography systems. Topological, subdivided surface area, and TAE (Transferable Atom Equivalent) electron-density-based descriptors are computed directly for a set of proteins using molecular connectivity patterns and crystal structure geometries. A novel algorithm based on Support Vector Machine (SVM) regression has been employed to obtain predictive QSRR models using a two-step computational strategy. In the first step, a sparse linear SVM was utilized as a feature selection procedure to remove irrelevant or redundant information. Subsequently, the selected features were used to produce an ensemble of nonlinear SVM regression models that were combined using bootstrap aggregation (bagging) techniques, where various combinations of training and validation data sets were selected from the pool of available data. A visualization scheme (star plots) was used to display the relative importance of each selected descriptor in the final set of "bagged" models. Once these predictive models have been validated, they can be used as an automated prediction tool for virtual high-throughput screening (VHTS).

PubMed Disclaimer

Publication types

LinkOut - more resources