Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Dec;35(12):1533-40.
doi: 10.1016/s0021-9290(02)00093-3.

Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques

Affiliations
Comparative Study

Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques

D Bluestein et al. J Biomech. 2002 Dec.

Erratum in

  • J Biomech. 2003 Jul;36(7):1065-6

Abstract

The high incidence of thromboembolic complications of mechanical heart valves (MHV), primarily due to platelet activation by contact with foreign surfaces and by non-physiological flow patterns past the valve, still limits their success as permanent implants. The latter include elevated shear and turbulent stresses and shed vortices formed in the wake of the valve's leaflets during the deceleration phase, potentially entrapping activated and aggregated platelets. It is hypothesized that these flow patterns induce the formation of free emboli which are the source of cerebrovascular microemboli associated with MHV. Implicit to this hypothesis is that free emboli formation will be affected by the implantation technique employed and the valve orientation, as those will alter the flow characteristics past the valve and the interaction of the platelets with the flow. In this study, numerical simulations of turbulent pulsatile flow past a St. Jude Medical bi-leaflet MHV were conducted. Platelet shear histories were calculated along pertinent turbulent platelet trajectories, and the effect of a misaligned valve on platelet activation was quantified and compared to that of an aligned valve. It demonstrated that the combination of a tilted valve and subannularly sutured pledgets had an explicit detrimental effect on platelet activation, with the following entrapment of the platelets within the shed vortices of the wake leading to a significant increase of the thromboembolic potential of the valve. This numerical model depicted a viable course for free emboli formation, and indicated how the implantation technique may enhance the risk of cardioembolism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources