Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Apr-Jun;96(3-4):265-71.
doi: 10.1016/s0928-4257(02)00015-3.

Astrocyte-synthesized oleic acid behaves as a neurotrophic factor for neurons

Affiliations
Review

Astrocyte-synthesized oleic acid behaves as a neurotrophic factor for neurons

José M Medina et al. J Physiol Paris. 2002 Apr-Jun.

Abstract

Unlike in the adult brain, the newborn brain specifically takes up serum albumin during the postnatal period, coinciding with the stage of maximal brain development. Here we shall summarize our knowledge about the role played by albumin in brain development. The role of this protein in brain development is intimately related to its ability to carry fatty acids. Thus, albumin stimulates oleic acid synthesis by astrocytes from the main metabolic substrates available during brain development. Astrocytes internalize albumin in vesicle-like structures by receptor-mediated endocytosis, which is followed by transcytosis, including passage through the endoplasmic reticulum (ER). The presence of albumin in the ER activates the sterol regulatory element-binding protein-1 (SREBP-1) and increases stearoyl-CoA 9-desaturase (SCD) mRNA, the key enzyme in oleic acid synthesis. Oleic acid released by astrocytes is used by neurons for the synthesis of phospholipids and is specifically incorporated into growth cones. In addition, oleic acid promotes axonal growth, neuronal clustering, and the expression of the axonal growth associated protein, GAP-43. All of these observations indicate neuronal differentiation. The effect of oleic acid on GAP-43 synthesis is brought about by the activation of protein kinase C. The expression of GAP-43 is significantly increased by the presence of albumin in neurons co-cultured with astrocytes, indicating that neuronal differentiation takes place by the presence of oleic acid synthesized and released by astrocytes in situ. In conclusion, during brain development the presence of albumin could play an important role by triggering the synthesis and release of oleic acid by astrocytes, thereby inducing neuronal differentiation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources