Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Dec 13;957(2):223-30.
doi: 10.1016/s0006-8993(02)03551-5.

Reversal of biochemical and behavioral parameters of brain aging by melatonin and acetyl L-carnitine

Affiliations
Free article

Reversal of biochemical and behavioral parameters of brain aging by melatonin and acetyl L-carnitine

Edward H Sharman et al. Brain Res. .
Free article

Abstract

The potential utility of dietary supplementation in order to prevent some of the oxidative and inflammatory changes occurring in the brain with age, has been studied. The cerebral cortex of 27-month-old male B6C3F1 mice had elevated levels of nitric oxide synthase 1 (EC 1.14.13.39) (nNOS) and peptide nitrotyrosine relative to cortices of younger (4-month-old) animals. After 25-month-old mice received basal diet together with 300 mg/l acetyl L-carnitine in the drinking water for 8 weeks, these levels were fully restored to those found in younger animals. A partial restoration was found when old animals received basal diet supplemented with 200 ppm melatonin in the diet. Levels of mRNA (messenger RNA) for nNOS were unchanged following these treatments implying translational regulation of nNOS activity. Behavioral indices indicative of exploratory behavior were also depressed in aged animals. Dietary supplementation with melatonin or acetyl L-carnitine partially reversed these changes. These findings suggest that dietary supplementation cannot merely arrest but indeed reverse some age-related increases in markers of oxidative and inflammatory events occurring with the cortex.

PubMed Disclaimer

Publication types

MeSH terms