Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Dec;48(12):2217-24.

High-throughput quantification of lysophosphatidylcholine by electrospray ionization tandem mass spectrometry

Affiliations
  • PMID: 12446479

High-throughput quantification of lysophosphatidylcholine by electrospray ionization tandem mass spectrometry

Gerhard Liebisch et al. Clin Chem. 2002 Dec.

Abstract

Background: Lysophosphatidylcholine (LPC) has been suggested to play a functional role in various diseases, including atherosclerosis, diabetes, and cancer mediated by LPC-specific G-protein-coupled receptors. Initial studies provided evidence for a potential use of LPC as diagnostic maker. However, existing methodologies are of limited value for a systematic evaluation of LPC species concentrations because of complicated, time-consuming procedures. We describe a methodology based on electrospray ionization tandem mass spectrometry (ESI-MS/MS) applicable for high-throughput LPC quantification.

Methods: Crude lipid extracts of EDTA-plasma samples were used for direct flow injection analysis. LPC 13:0 and LPC 19:0 were added as internal standards, and the ESI-MS/MS was operated in the parent-scan mode for m/z 184. Quantification was achieved by standard addition. Data processing was highly automated by use of the mass spectrometer software and self-programmed Excel macros.

Results: The calibrators LPC 16:0, LPC 18:0, and LPC 22:0 showed a linear response independent of sample dilution and plasma cholesterol concentration for both internal standards. The within-run imprecision (CV) was 3% for the major and 12% for the minor species, whereas the total imprecision was approximately 12% for the major and 25% for the minor species. The detection limit was <1 micromol/L.

Conclusion: The developed ESI-MS/MS methodology with an analysis time of 2 min/sample, simple sample preparation, and automated data analysis allows high-throughput quantification of distinct LPC species from plasma samples, which could be a valuable tool for the evaluation of LPC as diagnostic marker.

PubMed Disclaimer

Substances

LinkOut - more resources