Characterization of a fourth tungsten-containing enzyme from the hyperthermophilic archaeon Pyrococcus furiosus
- PMID: 12446645
- PMCID: PMC135473
- DOI: 10.1128/JB.184.24.6952-6956.2002
Characterization of a fourth tungsten-containing enzyme from the hyperthermophilic archaeon Pyrococcus furiosus
Abstract
Pyrococcus furiosus grows optimally near 100 degrees C using peptides and carbohydrates as carbon sources, and it reduces elemental sulfur (S(0)), if present, to H(2)S. Tungsten (W), an element rarely used in biology, is required for optimal growth, and three different tungsten-containing enzymes have been previously purified from this organism. They all oxidize aldehydes of various types and are thought to play primary roles in the catabolism of sugars or amino acids. Here, the purification of a fourth tungsten-containing enzyme, termed WOR 4, from cell extracts of P. furiosus grown with S(0) is described. This was achieved by monitoring through multiple chromatography steps the W that is not associated with the three characterized tungstoenzymes. The N-terminal sequence of WOR 4 and the approximate molecular weight of its subunit determined electrophoretically (69,000) correspond to the product of an ORF (PF1961, wor4) present in the complete genome sequence of P. furiosus. WOR 4 is a homodimer and contains approximately one W, three Fe, three or four acid-labile sulfide, and one Ca atom per subunit. The visible and electron paramagnetic resonance spectra of the oxidized and reduced enzyme indicate the presence of an unusual iron-sulfur chromophore. WOR 4 does not oxidize aliphatic or aromatic aldehydes or hydroxy acids, nor does it reduce keto acids. Consistent with prior microarray data, the protein could not be purified from P. furiosus cells grown in the absence of S(0), suggesting that it may have a role in S(0) metabolism.
Figures


Similar articles
-
Purification and molecular characterization of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus: the third of a putative five-member tungstoenzyme family.J Bacteriol. 1999 Feb;181(4):1171-80. doi: 10.1128/JB.181.4.1171-1180.1999. J Bacteriol. 1999. PMID: 9973343 Free PMC article.
-
WOR5, a novel tungsten-containing aldehyde oxidoreductase from Pyrococcus furiosus with a broad substrate Specificity.J Bacteriol. 2005 Oct;187(20):7056-61. doi: 10.1128/JB.187.20.7056-7061.2005. J Bacteriol. 2005. PMID: 16199576 Free PMC article.
-
Characterization of a novel tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon, Thermococcus litoralis. A role for tungsten in peptide catabolism.J Biol Chem. 1993 Jun 25;268(18):13592-600. J Biol Chem. 1993. PMID: 8390467
-
Tungsten in biological systems.FEMS Microbiol Rev. 1996 Mar;18(1):5-63. doi: 10.1016/0168-6445(95)00025-9. FEMS Microbiol Rev. 1996. PMID: 8672295 Review.
-
The Development of Tungsten Biochemistry-A Personal Recollection.Molecules. 2023 May 11;28(10):4017. doi: 10.3390/molecules28104017. Molecules. 2023. PMID: 37241758 Free PMC article. Review.
Cited by
-
Navigating the archaeal frontier: insights and projections from bioinformatic pipelines.Front Microbiol. 2024 Sep 23;15:1433224. doi: 10.3389/fmicb.2024.1433224. eCollection 2024. Front Microbiol. 2024. PMID: 39380680 Free PMC article.
-
Impact of substrate glycoside linkage and elemental sulfur on bioenergetics of and hydrogen production by the hyperthermophilic archaeon Pyrococcus furiosus.Appl Environ Microbiol. 2007 Nov;73(21):6842-53. doi: 10.1128/AEM.00597-07. Epub 2007 Sep 7. Appl Environ Microbiol. 2007. PMID: 17827328 Free PMC article.
-
The thermophilic biomass-degrading bacterium Caldicellulosiruptor bescii utilizes two enzymes to oxidize glyceraldehyde 3-phosphate during glycolysis.J Biol Chem. 2019 Jun 21;294(25):9995-10005. doi: 10.1074/jbc.RA118.007120. Epub 2019 May 16. J Biol Chem. 2019. PMID: 31097544 Free PMC article.
-
Ethanol production by the hyperthermophilic archaeon Pyrococcus furiosus by expression of bacterial bifunctional alcohol dehydrogenases.Microb Biotechnol. 2017 Nov;10(6):1535-1545. doi: 10.1111/1751-7915.12486. Epub 2017 Feb 14. Microb Biotechnol. 2017. PMID: 28194879 Free PMC article.
-
A New Class of Tungsten-Containing Oxidoreductase in Caldicellulosiruptor, a Genus of Plant Biomass-Degrading Thermophilic Bacteria.Appl Environ Microbiol. 2015 Oct;81(20):7339-47. doi: 10.1128/AEM.01634-15. Epub 2015 Aug 14. Appl Environ Microbiol. 2015. PMID: 26276113 Free PMC article.
References
-
- Akashi, T., N. Saito, H. Hirota, and S. Ayabe. 1997. Anthocyanin-producing dandelion callus as a chalcone synthase source in recombinant polyketide reductase assay. Phytochemistry 46:283-287. - PubMed
-
- Bayer, M., H. Gunther, and H. Simon. 1994. Purification and characterization of an (S)-3-hydroxycarboxylate oxidoreductase from Clostridium tyrobutyricum. Appl. Microbiol Biotechnol. 42:40-45. - PubMed
-
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. - PubMed
-
- Bryant, F. O., and M. W. W. Adams. 1989. Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. J. Biol. Chem. 264:5070-5079. - PubMed
-
- Cao, D., S. T. Fan, and S. S. Chung. 1998. Identification and characterization of a novel human aldose reductase-like gene. J. Biol. Chem. 273:11429-11435. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases