Membrane viscoelasticity
- PMID: 1244886
- PMCID: PMC1334809
- DOI: 10.1016/S0006-3495(76)85658-5
Membrane viscoelasticity
Abstract
In this paper, we develop a theory for viscoelastic behavior of large membrane deformations and apply the analysis to the relaxation of projections produced by small micropipette aspiration of red cell discocytes. We show that this relaxation is dominated by the membrane viscosity and that the cytoplasmic and extracellular fluid flow have negligible influence on the relaxation time and can be neglected. From preliminary data, we estimate the total membrane "viscosity" when the membrane material behaves in an elastic solid manner. The total membrane viscosity is calculated to be 10(-3) dyn-s/cm, which is a surface viscosity that is about three orders of magnitude greater than the surface viscosity of lipid membrane components (as determined by "fluidity" measurements). It is apparent that the lipid bilayer contributes little to the fluid dynamic behavior of the whole plasma membrane and that a structural matrix dominates the viscous dissipation. However, we show that viscous flow in the membrane is not responsible for the temporal dependence of the isotropic membrane tension required to produce lysis and that the previous estimates of Rand, Katchalsky, et al., for "viscosity" are six to eight orders of magnitude too large.
Similar articles
-
Membrane viscoplastic flow.Biophys J. 1976 Jan;16(1):13-26. doi: 10.1016/S0006-3495(76)85659-7. Biophys J. 1976. PMID: 1244887 Free PMC article.
-
Elastic area compressibility modulus of red cell membrane.Biophys J. 1976 Jun;16(6):585-95. doi: 10.1016/S0006-3495(76)85713-X. Biophys J. 1976. PMID: 1276386 Free PMC article.
-
Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.Biophys J. 1998 Oct;75(4):2038-49. doi: 10.1016/S0006-3495(98)77646-5. Biophys J. 1998. PMID: 9746546 Free PMC article.
-
Structure and deformation properties of red blood cells: concepts and quantitative methods.Methods Enzymol. 1989;173:3-35. doi: 10.1016/s0076-6879(89)73003-2. Methods Enzymol. 1989. PMID: 2674613 Review.
-
The extracellular matrix viscoelasticity as a regulator of cell and tissue dynamics.Curr Opin Cell Biol. 2021 Oct;72:10-18. doi: 10.1016/j.ceb.2021.04.002. Epub 2021 May 13. Curr Opin Cell Biol. 2021. PMID: 33993058 Review.
Cited by
-
Red blood cell deformation in shear flow. Effects of internal and external phase viscosity and of in vivo aging.Biophys J. 1985 May;47(5):695-704. doi: 10.1016/S0006-3495(85)83966-7. Biophys J. 1985. PMID: 4016189 Free PMC article.
-
Energy Dissipation in the Human Red Cell Membrane.Biomolecules. 2023 Jan 9;13(1):130. doi: 10.3390/biom13010130. Biomolecules. 2023. PMID: 36671515 Free PMC article.
-
Tank-treading dynamics of red blood cells in shear flow: On the membrane viscosity rheology.Biophys J. 2022 Sep 20;121(18):3393-3410. doi: 10.1016/j.bpj.2022.08.016. Epub 2022 Aug 18. Biophys J. 2022. PMID: 35986517 Free PMC article.
-
Sticking together: Polymerization of sickle hemoglobin drives the multiscale pathophysiology of sickle cell disease.Biophys Rev (Melville). 2025 Mar 20;6(1):011309. doi: 10.1063/5.0238698. eCollection 2025 Mar. Biophys Rev (Melville). 2025. PMID: 40124403 Review.
-
Biomechanics and biophysics of cancer cells.Acta Biomater. 2007 Jul;3(4):413-38. doi: 10.1016/j.actbio.2007.04.002. Epub 2007 May 30. Acta Biomater. 2007. PMID: 17540628 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources