Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002;12(3):209-36.
doi: 10.1615/critreveukaryotgeneexpr.v12.i3.40.

Scaffolds for tissue engineering of cartilage

Affiliations
Review

Scaffolds for tissue engineering of cartilage

T B F Woodfield et al. Crit Rev Eukaryot Gene Expr. 2002.

Abstract

Articular cartilage lesions resulting from trauma or degenerative diseases are commonly encountered clinical problems. It is well-established that adult articular cartilage has limited regenerative capacity, and, although numerous treatment protocols are currently employed clinically, few approaches exist that are capable of consistently restoring long-term function to damaged articular cartilage. Tissue engineering strategies that focus on the use of three-dimensional scaffolds for repairing articular cartilage lesions offer many advantages over current treatment strategies. Appropriate design of biodegradable scaffold conduits (either preformed or injectable) allow for the delivery of reparative cells bioactive factors, or gene factors to the defect site in an organized manner. This review seeks to highlight pertinent design considerations and limitations related to the development, material selection, and processing of scaffolds for articular cartilage tissue engineering, evidenced over the last decade. In particular, considerations for novel repair strategies that use scaffolds in combination with controlled release of bioactive factors or gene therapy are discussed, as are scaffold criteria related to mechanical stimulation of cell-seeded constructs. Furthermore, the subsequent impact of current and future aspects of these multidisciplinary scaffold-based approaches related to in vitro and in vivo cartilage tissue engineering are reported herein.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources