Co-regulation of pathogenesis with dimorphism and phenotypic switching in Candida albicans, a commensal and a pathogen
- PMID: 12452278
- DOI: 10.1078/1438-4221-00215
Co-regulation of pathogenesis with dimorphism and phenotypic switching in Candida albicans, a commensal and a pathogen
Abstract
Candida albicans, a common fungal pathogen of humans, can colonize in many diverse environments of the host and convert between a harmless commensal and a pathogen. Recent advances indicate that C. albicans uses a common set of conserved pathways to regulate dimorphism, mating and phenotypic switching. Major pathways known to regulate dimorphism include a mitogen-activated protein (MAP) kinase pathway through Cph1, the cAMP-dependent protein kinase pathway via Efg1, and Tup1-mediated repression through Rfg1 and Nrg1. The Cph1-mediated MAP kinase pathway is critical for the mating process, while all three pathways are implicated in the regulation of white-opaque switching. All these developmental pathways regulate the expression of hypha-specific and/or phase-specific genes. A high proportion of hypha-specific genes and phase-specific genes encode proteins that contribute directly or indirectly to pathogenesis and virulence of C. albicans. Therefore, virulence genes are co-regulated with cell morphogenesis. This supports a previous notion that the unique aspects of C. albicans commensalism and pathogenesis may lie in the developmental programs of dimorphism and phenotypic switching.
Similar articles
-
Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis.EMBO J. 2004 Apr 21;23(8):1845-56. doi: 10.1038/sj.emboj.7600195. Epub 2004 Apr 8. EMBO J. 2004. PMID: 15071502 Free PMC article.
-
Transcriptional control of dimorphism in Candida albicans.Curr Opin Microbiol. 2001 Dec;4(6):728-35. doi: 10.1016/s1369-5274(01)00275-2. Curr Opin Microbiol. 2001. PMID: 11731326 Review.
-
Deletion of EFG1 promotes Candida albicans opaque formation responding to pH via Rim101.Acta Biochim Biophys Sin (Shanghai). 2010 Oct;42(10):735-44. doi: 10.1093/abbs/gmq076. Acta Biochim Biophys Sin (Shanghai). 2010. PMID: 20870932
-
Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.J Mol Biol. 2001 Jun 22;309(5):1007-15. doi: 10.1006/jmbi.2001.4742. J Mol Biol. 2001. PMID: 11399075
-
Signaling through protein kinases and transcriptional regulators in Candida albicans.Crit Rev Microbiol. 2003;29(3):259-75. doi: 10.1080/713610451. Crit Rev Microbiol. 2003. PMID: 14582620 Review.
Cited by
-
Multi-Omics Profiling of Candida albicans Grown on Solid Versus Liquid Media.Microorganisms. 2023 Nov 22;11(12):2831. doi: 10.3390/microorganisms11122831. Microorganisms. 2023. PMID: 38137975 Free PMC article.
-
A genome-wide transcriptional analysis of morphology determination in Candida albicans.Mol Biol Cell. 2013 Feb;24(3):246-60. doi: 10.1091/mbc.E12-01-0065. Epub 2012 Dec 14. Mol Biol Cell. 2013. PMID: 23242994 Free PMC article.
-
The RIM101 signal transduction pathway regulates Candida albicans virulence during experimental keratomycosis.Invest Ophthalmol Vis Sci. 2010 Sep;51(9):4668-76. doi: 10.1167/iovs.09-4726. Epub 2010 Apr 7. Invest Ophthalmol Vis Sci. 2010. PMID: 20375342 Free PMC article.
-
Fungal sex and pathogenesis.Clin Microbiol Rev. 2010 Jan;23(1):140-59. doi: 10.1128/CMR.00053-09. Clin Microbiol Rev. 2010. PMID: 20065328 Free PMC article. Review.
-
Identification and characterization of a Candida albicans mating pheromone.Mol Cell Biol. 2003 Nov;23(22):8189-201. doi: 10.1128/MCB.23.22.8189-8201.2003. Mol Cell Biol. 2003. PMID: 14585977 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources