Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Jan;35(1):3-10.

Mechanism of anion transport in red blood cells: role of membrane proteins

  • PMID: 1245231

Mechanism of anion transport in red blood cells: role of membrane proteins

A Rothstein et al. Fed Proc. 1976 Jan.

Abstract

A number of anionic chemical probes that inhibit anion permeability of red blood cells are localized in a membrane protein of about 100,000 daltons, known as band 3. The inhibitory site has been explored using a series of disulfonic stilbene compounds. It apparently contains three positive charges, probably amino groups. Two probes, pyridoxal phosphate and N-(4-azido-2-nitropheyny)-2-amino ethyl sulfonate, are transported by the anion system but can be fixed in an irreversible bond under specified conditions (reduction with NaBH4 or exposure to light, respectively). Data obtained with these compounds indicate that the inhibitory site in band 3 is the transport site itself. Band 3 protein is exposed in part on the outside of the cell but it is also hydrophobically associated with membrane lipid. A model is proposed in which the band 3 protein acts as an anion permeation channel through the lipid bilayer. Near the outer aspect of the channel an anion binding site can undergo a local conformational change allowing a one-for-one anion exchange across a diffusion barrier.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms