Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Jan;35(1):51-3.

Tunable laser resonance Raman spectroscopic investigations of the transduction process in vertebrate rod cells

  • PMID: 1245232

Tunable laser resonance Raman spectroscopic investigations of the transduction process in vertebrate rod cells

A Lewis. Fed Proc. 1976 Jan.

Abstract

Tunable laser resonance Raman spectroscopy has been applied to probe (in vivo) the role of rhodopsin in transducing light energy into the chemical necessary to generate a neural response. These in vivo experiments have suggested that the Schiff base linkage through which retinal is attached to opsin in rhodopsin is protonated. Furthermore, it appears that light eventually stimulates the deprotonation of the Schiff base linkage between the Meta I and Meta II steps in the intermediate sequence which is the result of light interacting with rhodopsin. Our data suggest that this deprotonation of the Schiff base occurs on the same time scale as overall proton release and uptake by the rhodopsin molecule. It is interesting to note that this series of protonations and deprotonations also occurs within the same time scale as the neural response generation in vertebrates and the generation of a proton gradient by bacteriorhodopsin, which is used by the bacterium, Halobacterium halobium, for ATP synthesis. If these data are analyzed within the context of the in vivo resonance Raman experiments (which seem to indicate that proton release is stimulated in the disc membrane during transduction) then there is a strong suggestion that the proton will assume an important role in any working hypothesis of visual transduction. In essence it appears that protons along with ATP and calcium ions must all be essential elements in the transduction process.

PubMed Disclaimer

Similar articles

Cited by

Publication types