Active microelectronic array system for DNA hybridization, genotyping and pharmacogenomic applications
- PMID: 12454523
- DOI: 10.1097/00041444-200212000-00001
Active microelectronic array system for DNA hybridization, genotyping and pharmacogenomic applications
Abstract
Microelectronic arrays have been developed for DNA hybridization analysis of point mutations, single nucleotide polymorphisms, short tandem repeats and gene expression. In addition to a variety of molecular biology and genomic research applications, such devices will also be used for infectious disease detection, genetic and cancer diagnostics, and pharmacogenomic applications. These microelectronic array devices are able to produce defined electric fields on their surfaces that allow charged molecules and other entities to be transported to or from any test site or micro-location on the planar surface of the device. These molecules and entities include DNA, RNA, proteins, enzymes, antibodies and cells. Electronic-based molecule addressing and hybridization can then be carried out, where the electric field is now used to greatly accelerate the hybridization reactions that occur on the selected test sites. When reversed, the electric field can be used to provide an additional parameter for improved hybridization. Special low-conductance buffers have been developed that provide for the rapid transport of the DNA molecules and facilitate the electronic hybridization reactions under conditions that do not support hybridization. Important to the device function is the permeation layer that overcoats the underlying microelectrodes. Generally composed of a porous hydrogel material impregnated with attachment chemistry, this permeation layer prevents the destruction of analytes at the active microelectrode surface, ameliorates the adverse effects of electrolysis products on the sensitive hybridization and affinity reactions, and serves as a support structure for attaching DNA probes and other molecules to the array. The microelectronic chip or array device is incorporated into a cartridge package (NanoChip trade mark cartridge) that provides the electronic, optical, and fluidic interfacing. A complete instrument system (NanoChip trade mark Molecular Biology Workstation) provides a chip loader, fluorescent reader, computer control interface and data display screen. The probe loader component allows DNA probes or target molecules (polymerase chain reactions amplicons, genomic DNA, RNA, etc.) to be selectively addressed to the array test sites, providing the end-user with 'make your own chip' capabilities. The electronic hybridization can then be carried out and the chip analyzed using a fluorescent detector system. In addition to carrying out rapid, accurate and highly reliable genotyping (point mutations, single nucleotide polymorphisms, short tandem repeats), other future applications include gene expression analysis, or on-chip amplification, immunoassays and cell separation and selection. Smaller and more compact systems are also being designed for portable sample to answer and point of care diagnostics.
Similar articles
-
Active microeletronic chip devices which utilize controlled electrophoretic fields for multiplex DNA hybridization and other genomic applications.Electrophoresis. 2000 Jan;21(1):157-64. doi: 10.1002/(SICI)1522-2683(20000101)21:1<157::AID-ELPS157>3.0.CO;2-E. Electrophoresis. 2000. PMID: 10634482
-
Microelectronic array devices and techniques for electric field enhanced DNA hybridization in low-conductance buffers.Electrophoresis. 2002 May;23(10):1543-50. doi: 10.1002/1522-2683(200205)23:10<1543::AID-ELPS1543>3.0.CO;2-#. Electrophoresis. 2002. PMID: 12116167
-
Microelectronic array system for molecular diagnostic genotyping: Nanogen NanoChip 400 and molecular biology workstation.Expert Rev Mol Diagn. 2006 May;6(3):287-94. doi: 10.1586/14737159.6.3.287. Expert Rev Mol Diagn. 2006. PMID: 16706733 Review.
-
Anchored multiplex amplification on a microelectronic chip array.Nat Biotechnol. 2000 Feb;18(2):199-204. doi: 10.1038/72658. Nat Biotechnol. 2000. PMID: 10657128
-
DNA microarray technology: devices, systems, and applications.Annu Rev Biomed Eng. 2002;4:129-53. doi: 10.1146/annurev.bioeng.4.020702.153438. Epub 2002 Mar 22. Annu Rev Biomed Eng. 2002. PMID: 12117754 Review.
Cited by
-
Microarray-based STR genotyping using RecA-mediated ligation.Nucleic Acids Res. 2010 Sep;38(17):e172. doi: 10.1093/nar/gkq657. Epub 2010 Aug 3. Nucleic Acids Res. 2010. PMID: 20682559 Free PMC article.
-
Use of microelectronic array technology for rapid identification of clinically relevant mycobacteria.J Clin Microbiol. 2005 Dec;43(12):6189-93. doi: 10.1128/JCM.43.12.6189-6193.2005. J Clin Microbiol. 2005. PMID: 16333127 Free PMC article.
-
env Gene typing of human immunodeficiency virus type 1 strains on electronic microarrays.J Clin Microbiol. 2005 Apr;43(4):1910-6. doi: 10.1128/JCM.43.4.1910-1916.2005. J Clin Microbiol. 2005. PMID: 15815017 Free PMC article.
-
Overview of electrochemical DNA biosensors: new approaches to detect the expression of life.Sensors (Basel). 2009;9(4):3122-48. doi: 10.3390/s90403122. Epub 2009 Apr 24. Sensors (Basel). 2009. PMID: 22574066 Free PMC article.
-
Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication.J Biomed Biotechnol. 2011;2011:348218. doi: 10.1155/2011/348218. Epub 2011 Oct 29. J Biomed Biotechnol. 2011. PMID: 22131802 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources