Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Dec;12(4):181-92.
doi: 10.1097/00041444-200212000-00001.

Active microelectronic array system for DNA hybridization, genotyping and pharmacogenomic applications

Affiliations
Review

Active microelectronic array system for DNA hybridization, genotyping and pharmacogenomic applications

Ron Sosnowski et al. Psychiatr Genet. 2002 Dec.

Abstract

Microelectronic arrays have been developed for DNA hybridization analysis of point mutations, single nucleotide polymorphisms, short tandem repeats and gene expression. In addition to a variety of molecular biology and genomic research applications, such devices will also be used for infectious disease detection, genetic and cancer diagnostics, and pharmacogenomic applications. These microelectronic array devices are able to produce defined electric fields on their surfaces that allow charged molecules and other entities to be transported to or from any test site or micro-location on the planar surface of the device. These molecules and entities include DNA, RNA, proteins, enzymes, antibodies and cells. Electronic-based molecule addressing and hybridization can then be carried out, where the electric field is now used to greatly accelerate the hybridization reactions that occur on the selected test sites. When reversed, the electric field can be used to provide an additional parameter for improved hybridization. Special low-conductance buffers have been developed that provide for the rapid transport of the DNA molecules and facilitate the electronic hybridization reactions under conditions that do not support hybridization. Important to the device function is the permeation layer that overcoats the underlying microelectrodes. Generally composed of a porous hydrogel material impregnated with attachment chemistry, this permeation layer prevents the destruction of analytes at the active microelectrode surface, ameliorates the adverse effects of electrolysis products on the sensitive hybridization and affinity reactions, and serves as a support structure for attaching DNA probes and other molecules to the array. The microelectronic chip or array device is incorporated into a cartridge package (NanoChip trade mark cartridge) that provides the electronic, optical, and fluidic interfacing. A complete instrument system (NanoChip trade mark Molecular Biology Workstation) provides a chip loader, fluorescent reader, computer control interface and data display screen. The probe loader component allows DNA probes or target molecules (polymerase chain reactions amplicons, genomic DNA, RNA, etc.) to be selectively addressed to the array test sites, providing the end-user with 'make your own chip' capabilities. The electronic hybridization can then be carried out and the chip analyzed using a fluorescent detector system. In addition to carrying out rapid, accurate and highly reliable genotyping (point mutations, single nucleotide polymorphisms, short tandem repeats), other future applications include gene expression analysis, or on-chip amplification, immunoassays and cell separation and selection. Smaller and more compact systems are also being designed for portable sample to answer and point of care diagnostics.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources