Molecular mechanisms of cerebral ischemia-induced neuronal death
- PMID: 12455747
- DOI: 10.1016/s0074-7696(02)21011-6
Molecular mechanisms of cerebral ischemia-induced neuronal death
Abstract
The mode of neuronal death caused by cerebral ischemia and reperfusion appears on the continuum between the poles of catastrophic necrosis and apoptosis: ischemic neurons exhibit many biochemical hallmarks of apoptosis but remain cytologically necrotic. The position on this continuum may be modulated by the severity of the ischemic insult. The ischemia-induced neuronal death is an active process (energy dependent) and is the result of activation of cascades of detrimental biochemical events that include perturbion of calcium homeostasis leading to increased excitotoxicity, malfunction of endoplasmic reticulum and mitochondria, elevation of oxidative stress causing DNA damage, alteration in proapoptotic gene expression, and activation of the effector cysteine proteases (caspases) and endonucleases leading to the final degradation of the genome. In spite of strong evidence showing that brain infarction can be reduced by inhibiting any one of the above biochemical events, such as targeting excitotoxicity, up-regulation of an antiapoptotic gene, or inhibition of a down-stream effector caspase, it is becoming clear that targeting a single gene or factor is not sufficient for stroke therapeutics. An effective neuroprotective therapy is likely to be a cocktail aimed at all of the above detrimental events evoked by cerebral ischemia and the success of such therapeutic intervention relies upon the complete elucidation of pathways and mechanisms of the cerebral ischemia-induced active neuronal death.
Similar articles
-
Contribution of downregulation of L-type calcium currents to delayed neuronal death in rat hippocampus after global cerebral ischemia and reperfusion.J Neurosci. 2007 May 9;27(19):5249-59. doi: 10.1523/JNEUROSCI.0802-07.2007. J Neurosci. 2007. PMID: 17494711 Free PMC article.
-
Brain ischemia and reperfusion: molecular mechanisms of neuronal injury.J Neurol Sci. 2000 Oct 1;179(S 1-2):1-33. doi: 10.1016/s0022-510x(00)00386-5. J Neurol Sci. 2000. PMID: 11054482 Review.
-
RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways.Cell Death Dis. 2017 Oct 5;8(10):e3080. doi: 10.1038/cddis.2017.465. Cell Death Dis. 2017. PMID: 28981095 Free PMC article.
-
Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis.Brain Res Bull. 1998 Jul 1;46(4):281-309. doi: 10.1016/s0361-9230(98)00024-0. Brain Res Bull. 1998. PMID: 9671259 Review.
-
Molecular targets in cerebral ischemia for developing novel therapeutics.Brain Res Rev. 2007 Apr;54(1):34-66. doi: 10.1016/j.brainresrev.2006.11.003. Epub 2007 Jan 12. Brain Res Rev. 2007. PMID: 17222914 Review.
Cited by
-
Reperfusion promotes mitochondrial dysfunction following focal cerebral ischemia in rats.PLoS One. 2012;7(9):e46498. doi: 10.1371/journal.pone.0046498. Epub 2012 Sep 28. PLoS One. 2012. PMID: 23029539 Free PMC article.
-
Phaseic Acid, an Endogenous and Reversible Inhibitor of Glutamate Receptors in Mouse Brain.J Biol Chem. 2016 Dec 30;291(53):27007-27022. doi: 10.1074/jbc.M116.756429. Epub 2016 Nov 18. J Biol Chem. 2016. PMID: 27864367 Free PMC article.
-
Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke.Cell Death Dis. 2013 Sep 5;4(9):e790. doi: 10.1038/cddis.2013.326. Cell Death Dis. 2013. PMID: 24008734 Free PMC article.
-
The mitochondrial permeability transition pore: a molecular target for amyotrophic lateral sclerosis therapy.Biochim Biophys Acta. 2010 Jan;1802(1):186-97. doi: 10.1016/j.bbadis.2009.07.009. Epub 2009 Aug 3. Biochim Biophys Acta. 2010. PMID: 19651206 Free PMC article. Review.
-
Evidence that collaboration between HIF-1α and Notch-1 promotes neuronal cell death in ischemic stroke.Neurobiol Dis. 2014 Feb;62:286-95. doi: 10.1016/j.nbd.2013.10.009. Epub 2013 Oct 16. Neurobiol Dis. 2014. PMID: 24141018 Free PMC article.