Automated design of specificity in molecular recognition
- PMID: 12459719
- DOI: 10.1038/nsb877
Automated design of specificity in molecular recognition
Abstract
Specific protein-protein interactions are crucial in signaling networks and for the assembly of multi-protein complexes, and represent a challenging goal for protein design. Optimizing interaction specificity requires both positive design, the stabilization of a desired interaction, and negative design, the destabilization of undesired interactions. Currently, no automated protein-design algorithms use explicit negative design to guide a sequence search. We describe a multi-state framework for engineering specificity that selects sequences maximizing the transfer free energy of a protein from a target conformation to a set of undesired competitor conformations. To test the multi-state framework, we engineered coiled-coil interfaces that direct the formation of either homodimers or heterodimers. The algorithm identified three specificity motifs that have not been observed in naturally occurring coiled coils. In all cases, experimental results confirm the predicted specificities.
Similar articles
-
Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.Proteins. 2009 May 15;75(3):682-705. doi: 10.1002/prot.22280. Proteins. 2009. PMID: 19003998
-
Socket: a program for identifying and analysing coiled-coil motifs within protein structures.J Mol Biol. 2001 Apr 13;307(5):1427-50. doi: 10.1006/jmbi.2001.4545. J Mol Biol. 2001. PMID: 11292353
-
Analysis of sequence-reactivity space for protein-protein interactions.Proteins. 2005 Feb 15;58(3):661-71. doi: 10.1002/prot.20341. Proteins. 2005. PMID: 15624216
-
Computational prediction of protein-protein interactions.Methods Mol Biol. 2004;261:445-68. doi: 10.1385/1-59259-762-9:445. Methods Mol Biol. 2004. PMID: 15064475 Review.
-
Pharmacological interference with protein-protein interactions mediated by coiled-coil motifs.Handb Exp Pharmacol. 2008;(186):461-82. doi: 10.1007/978-3-540-72843-6_19. Handb Exp Pharmacol. 2008. PMID: 18491064 Review.
Cited by
-
Computational design and experimental verification of a symmetric protein homodimer.Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10714-9. doi: 10.1073/pnas.1505072112. Epub 2015 Aug 12. Proc Natl Acad Sci U S A. 2015. PMID: 26269568 Free PMC article.
-
Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface.Nat Biotechnol. 2014 Feb;32(2):191-8. doi: 10.1038/nbt.2797. Epub 2014 Jan 26. Nat Biotechnol. 2014. PMID: 24463572
-
Computational design of protein-ligand interfaces: potential in therapeutic development.Trends Biotechnol. 2011 Apr;29(4):159-66. doi: 10.1016/j.tibtech.2011.01.002. Epub 2011 Feb 4. Trends Biotechnol. 2011. PMID: 21295366 Free PMC article. Review.
-
Challenges in the computational design of proteins.J R Soc Interface. 2009 Aug 6;6 Suppl 4(Suppl 4):S477-91. doi: 10.1098/rsif.2008.0508.focus. Epub 2009 Mar 11. J R Soc Interface. 2009. PMID: 19324680 Free PMC article. Review.
-
Searching for the Pareto frontier in multi-objective protein design.Biophys Rev. 2017 Aug;9(4):339-344. doi: 10.1007/s12551-017-0288-0. Epub 2017 Aug 10. Biophys Rev. 2017. PMID: 28799089 Free PMC article. Review.