Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Nov-Dec;69(5-6):265-74.
doi: 10.1034/j.1600-0609.2002.02813.x.

The enigma of the metabolic fate of circulating erythropoietin (Epo) in view of the pharmacokinetics of the recombinant drugs rhEpo and NESP

Affiliations
Review

The enigma of the metabolic fate of circulating erythropoietin (Epo) in view of the pharmacokinetics of the recombinant drugs rhEpo and NESP

Wolfgang Jelkmann. Eur J Haematol. 2002 Nov-Dec.

Abstract

Recombinant human erythropoietin (rhEpo) is a mainstay in the treatment of anaemia, primarily in renal failure. Because the half-life of circulating rhEpo is relatively short (4-8 h), the drug is usually administered 2-3 times weekly. Recently, a novel erythropoiesis-stimulating protein (NESP) with a longer half-life (24-26 h) has been approved. NESP possesses two additional N-glycans compared to endogenous Epo or rhEpo. The pharmacokinetics of rhEpo and NESP in humans have been investigated in detail. The composition of the N-glycans is clearly important in determining the biological activity and the velocity of the degradation of Epo and its analogues. However, due to the lack of knowledge of the main site and mechanism of the removal of Epo from circulation, the difference in survival of rhEpo and NESP has remained phenomenological. Investigators have implicated the liver, kidneys, and bone marrow as possible sites of the catabolism of Epo. However, while hepatocytes take up desialylated Epo, the liver does not appear to play a major role in the degradation of intact Epo. Likewise, renal Epo clearance is apparently of secondary importance. Studies showing non-linear pharmacokinetics of Epo suggest that Epo is eliminated by saturable mechanisms. The hormone, as well as the recombinant drugs, can be incorporated by erythrocytic progenitors and other tissues expressing the Epo receptor. The affinity of the Epo receptor for rhEpo is 4.3-fold higher than for NESP. Taken together, it seems most likely that native Epo, rhEpo and NESP are degraded following Epo receptor-mediated uptake, mainly in bone marrow.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources