The carboxy-terminal domain of the DExDH protein YxiN is sufficient to confer specificity for 23S rRNA
- PMID: 12460566
- DOI: 10.1016/s0022-2836(02)01140-3
The carboxy-terminal domain of the DExDH protein YxiN is sufficient to confer specificity for 23S rRNA
Abstract
DE x DH proteins are believed to modulate the structures of RNAs and ribonucleoprotein complexes by disrupting RNA helices and RNA-protein interactions. All DE x DH proteins contain a two-domain catalytic core that enables their RNA-dependent ATPase and RNA helicase activities. The catalytic core may be flanked by ancillary domains that are proposed to confer substrate specificity and facilitate the unique functions of individual proteins. The Escherichia coli DE x DH protein DbpA and its Bacillus subtilis ortholog YxiN have similar 75aa carboxy-terminal domains, and both proteins are specifically targeted to 23S rRNA. Here we demonstrate that the carboxy-terminal domain of YxiN is sufficient to confer RNA specificity by characterizing a chimera in which this domain is appended to the core domains of E.coli SrmB, a DE x DH protein with no apparent substrate specificity. Both the RNA-dependent ATPase and RNA helicase activities of the chimera are specifically activated by 23S rRNA and abolished by sequence changes within hairpin 92, a critical recognition element for Y x iN. These data support a model in which the carboxy-terminal domain binds hairpin 92 to target the protein to 23S rRNA.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
