Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Dec 2;1556(2-3):239-46.
doi: 10.1016/s0005-2728(02)00366-3.

Resolution of the Photosystem I and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature

Affiliations
Free article

Resolution of the Photosystem I and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature

Fabrice Franck et al. Biochim Biophys Acta. .
Free article

Abstract

Green leaves illuminated with photosynthetically active light emit red fluorescence, whose time-dependent intensity variations reflect photosynthetic electron transport (the Kautsky effect). Usually, fluorescence variations are discussed by considering only the contribution of PSII-associated chlorophyll a, although it is known that the fluorescence of PSI-associated chlorophyll a also contributes to the total fluorescence [Aust. J. Plant Physiol. 22 (1995) 131]. Because the fluorescence emitted by each photosystem cannot be measured separately by selecting the emission wavelength in in vivo conditions, the contribution of PSI to total fluorescence at room temperature is still in ambiguity. By using a diode array detector, we measured fluorescence emission spectra corresponding to the minimal (F(O)) and maximal (F(M)) fluorescence states. We showed that the different shapes of these spectra were mainly due to a higher contribution of PSI chlorophylls in the F(O) spectrum. By exciting PSI preferentially, we recorded a reference PSI emission spectrum in the near far-red region. From the F(O) and F(M) spectra and from this PSI reference spectrum, we derived specific PSI and PSII emission spectra in both the F(O) and F(M) states. This enables to estimate true value of the relative variable fluorescence of PSII, which was underestimated in previous works. Accurate separation of PSI-PSII fluorescence emission spectra will also enable further investigations of the distribution of excitation energy between PSI and PSII under in vivo conditions.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources