Biochemical evidence for the requirement of 14-3-3 protein binding in activation of the guard-cell plasma membrane H+-ATPase by blue light
- PMID: 12461136
- DOI: 10.1093/pcp/pcf167
Biochemical evidence for the requirement of 14-3-3 protein binding in activation of the guard-cell plasma membrane H+-ATPase by blue light
Abstract
Blue light (BL) activates the plasma membrane H(+)-ATPase via phosphorylation of the C-terminus with concomitant binding of 14-3-3 protein to the terminus in stomatal guard cells. However, the binding site and role of 14-3-3 protein in this physiological response have not been elucidated. We investigated the above using synthetic phosphopeptides designed from the C-terminus of Vicia H(+)-ATPase (isoform 1; VHA1). The presence of KGLDIDTIQQHYphospho-T(950)V peptide (P-950) prevented binding of 14-3-3 protein to the phosphorylated H(+)-ATPase. Dephosphorylated P-950 and other phosphopeptides, including typical phosphorylation sites in the C-terminus, had no effect on the binding. Incubation of BL-activated plasma membrane H(+)-ATPase with P-950 dissociated the 14-3-3 protein from the H(+)-ATPase without affecting phosphorylation levels and decreased the H(+)-ATPase activity. By contrast, incubation of P-950 with the activated H(+)-ATPase from fusicoccin-treated guard-cell protoplasts neither dissociated the 14-3-3 protein nor decreased the H(+)-ATPase activity. These results indicate that BL induces phosphorylation on threonine residue (Thr(950)) in the C-terminus of H(+)-ATPase, and that the binding of 14-3-3 to this site is required for the activation of H(+)-ATPase in stomatal guard cells.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
