Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Dec;87(5-6):344-55.
doi: 10.1007/s00422-002-0350-1.

Beyond spike timing: the role of nonlinear plasticity and unreliable synapses

Affiliations
Free article

Beyond spike timing: the role of nonlinear plasticity and unreliable synapses

Walter Senn. Biol Cybern. 2002 Dec.
Free article

Abstract

Spike-timing-dependent plasticity (STDP) strengthens synapses that are activated immediately before a postsynaptic spike, and weakens those that are activated after a spike. To prevent an uncontrolled growth of the synaptic strengths, weakening must dominate strengthening for uncorrelated spike times. However, this weight-normalization property would preclude Hebbian potentiation when the pre- and postsynaptic neurons are strongly active without specific spike-time correlations. We show that nonlinear STDP as inherent in the data of Markram et al. [(1997) Science 275:213-215] can preserve the benefits of both weight normalization and Hebbian plasticity, and hence can account for learning based on spike-time correlations and on mean firing rates. As examples we consider the moving-threshold property of the Bienenstock-Cooper-Munro rule, the development of direction-selective simple cells by changing short-term synaptic depression, and the joint adaptation of axonal and dendritic delays. Without threshold nonlinearity at low frequencies, the development of direction selectivity does not stabilize in a natural stimulation environment. Without synaptic unreliability there is no causal development of axonal and dendritic delays.

PubMed Disclaimer

Similar articles

Cited by

Publication types