Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates
- PMID: 12461635
- DOI: 10.1007/s00422-002-0356-8
Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates
Abstract
Synaptic plasticity is believed to underlie the formation of appropriate patterns of connectivity that stabilize stimulus-selective reverberations in the cortex. Here we present a general quantitative framework for studying the process of learning and memorizing of patterns of mean spike rates. General considerations based on the limitations of material (biological or electronic) synaptic devices show that most learning networks share the palimpsest property: old stimuli are forgotten to make room for the new ones. In order to prevent too-fast forgetting, one can introduce a stochastic mechanism for selecting only a small fraction of synapses to be changed upon the presentation of a stimulus. Such a mechanism can be easily implemented by exploiting the noisy fluctuations in the pre- and postsynaptic activities to be encoded. The spike-driven synaptic dynamics described here can implement such a selection mechanism to achieve slow learning, which is shown to maximize the performance of the network as an associative memory.
Similar articles
-
Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.Nat Neurosci. 2000 Sep;3(9):919-26. doi: 10.1038/78829. Nat Neurosci. 2000. PMID: 10966623
-
Learning in realistic networks of spiking neurons and spike-driven plastic synapses.Eur J Neurosci. 2005 Jun;21(11):3143-60. doi: 10.1111/j.1460-9568.2005.04087.x. Eur J Neurosci. 2005. PMID: 15978023
-
Modelling the formation of working memory with networks of integrate-and-fire neurons connected by plastic synapses.J Physiol Paris. 2003 Jul-Nov;97(4-6):659-81. doi: 10.1016/j.jphysparis.2004.01.021. J Physiol Paris. 2003. PMID: 15242673 Review.
-
Beyond spike timing: the role of nonlinear plasticity and unreliable synapses.Biol Cybern. 2002 Dec;87(5-6):344-55. doi: 10.1007/s00422-002-0350-1. Biol Cybern. 2002. PMID: 12461625
-
Spike timing dependent synaptic plasticity in biological systems.Biol Cybern. 2002 Dec;87(5-6):392-403. doi: 10.1007/s00422-002-0361-y. Biol Cybern. 2002. PMID: 12461629 Review.
Cited by
-
Trial-to-trial variability of single cells in motor cortices is dynamically modified during visuomotor adaptation.J Neurosci. 2009 Dec 2;29(48):15053-62. doi: 10.1523/JNEUROSCI.3011-09.2009. J Neurosci. 2009. PMID: 19955356 Free PMC article.
-
Long-term memory stabilized by noise-induced rehearsal.J Neurosci. 2014 Nov 19;34(47):15804-15. doi: 10.1523/JNEUROSCI.3929-12.2014. J Neurosci. 2014. PMID: 25411507 Free PMC article.
-
A history of spike-timing-dependent plasticity.Front Synaptic Neurosci. 2011 Aug 29;3:4. doi: 10.3389/fnsyn.2011.00004. eCollection 2011. Front Synaptic Neurosci. 2011. PMID: 22007168 Free PMC article.
-
Synaptic consolidation: from synapses to behavioral modeling.J Neurosci. 2015 Jan 21;35(3):1319-34. doi: 10.1523/JNEUROSCI.3989-14.2015. J Neurosci. 2015. PMID: 25609644 Free PMC article.
-
A tweaking principle for executive control: neuronal circuit mechanism for rule-based task switching and conflict resolution.J Neurosci. 2013 Dec 11;33(50):19504-17. doi: 10.1523/JNEUROSCI.1356-13.2013. J Neurosci. 2013. PMID: 24336717 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources