Repeated cocaine self-administration causes multiple changes in rat frontal cortex gene expression
- PMID: 12462416
- DOI: 10.1023/a:1020929526688
Repeated cocaine self-administration causes multiple changes in rat frontal cortex gene expression
Abstract
Repeated cocaine administration produces changes in gene expression that are thought to contribute to the behavioral alterations observed with cocaine abuse. This study focuses on gene expression changes in the frontal cortex, a component of reinforcement, sensory, associative, and executive circuitries. Changes in frontal cortex gene expression after repeated cocaine self-administration may lead to changes in the behaviors associated with this brain region. Rats self-administered cocaine for 10 days in a continuous access, discrete trial paradigm (averaging 100 mg/kg/day) and were examined for changes in relative frontal cortex mRNA abundance by cDNA hybridization arrays. Among the changes observed following array analysis, increased nerve-growth-factor-induced B (NGFI-B), adenylyl cyclase type VIII (AC VIII), and reduced cysteine-rich protein 2 (CRP2) mRNA were confirmed by quantitative RT-PCR. These changes share commonalities and exhibit differences with previous reports of gene expression changes in the frontal cortex after noncontingent cocaine administration.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous