Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Dec;3(4):329-47.
doi: 10.2174/1389201023378120.

The protein folding problem: a biophysical enigma

Affiliations
Review

The protein folding problem: a biophysical enigma

J S Fetrow et al. Curr Pharm Biotechnol. 2002 Dec.

Abstract

Protein folding, the problem of how an amino acid sequence folds into a unique three-dimensional shape, has been a long-standing problem in biology. The success of genome-wide sequencing efforts has increased the interest in understanding the protein folding enigma, because realizing the value of the genomic sequences rests on the accuracy with which the encoded gene products are understood. Although a complete understanding of the kinetics and thermodynamics of protein folding has remained elusive, there has been considerable progress in techniques to predict protein structure from amino acid sequences. The prediction techniques fall into three general classes: comparative modeling, threading and ab initio folding. The current state of research in each of these three areas is reviewed here in detail. Efforts to apply each method to proteome-wide analysis are reviewed, and some of the key technical hurdles that remain are presented. Protein folding technologies, while not yet providing a full understanding of the protein folding process, have clearly progressed to the point of being useful in enabling structure-based annotation of genomic sequences.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources