Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan 1;409(1):52-8.
doi: 10.1016/s0003-9861(02)00402-2.

Aromatic stacking as a determinant of the thermal stability of CYP119 from Sulfolobus solfataricus

Affiliations

Aromatic stacking as a determinant of the thermal stability of CYP119 from Sulfolobus solfataricus

Andrei V Puchkaev et al. Arch Biochem Biophys. .

Abstract

Two notable features of the thermophilic CYP119, an Arg154-Glu212 salt bridge between the F-G loop and the I helix and an extended aromatic cluster, were studied to determine their contributions to the thermal stability of the enzyme. Site-specific mutants of the salt bridge (Arg154, Glu212) and aromatic cluster (Tyr2, Trp4, Trp231, Tyr250, Trp281) were expressed and purified. The substrate-binding and kinetic constants for lauric acid hydroxylation are little affected in most mutants, but the E212D mutant is inactive and the R154Q mutant has higher K(s),K(m), and k(cat) values. The salt bridge mutants, like wild-type CYP119, melt at 91+/-1 degrees C, whereas mutation of individual residues in the extended aromatic cluster lowers the T(m) by 10-15 degrees C even though no change is observed on mutation of an unrelated aromatic residue. The extended aromatic cluster, but not the Arg154-Glu212 salt bridge, contributes to the thermal stability of CYP119.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources