Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Dec;48(6):1068-71.
doi: 10.1002/mrm.10327.

Relaxivity and diffusion of gadolinium agents in cartilage

Affiliations
Free article

Relaxivity and diffusion of gadolinium agents in cartilage

Amy Gillis et al. Magn Reson Med. 2002 Dec.
Free article

Abstract

Prior work indicates that the distribution of Gd(DTPA)(2-) (as measured by T(1)) is a good surrogate measure of the distribution of gycosaminoglycan (GAG) in cartilage. In addition to the measured T(1) in the presence of Gd(DTPA)(2-), the precision of the measurement of Gd(DTPA)(2-) concentration depends on the T(1) without Gd(DTPA)(2-) (T(o)(1)), and the relaxivity (r) of Gd(DTPA)(2-) in cartilage, parameters that are influenced by cartilage composition. These parameters were measured in native and GAG-depleted cartilage in order to estimate the bounds on the values one might expect for cartilage in arbitrary states of degeneration. The range of T(o)(1) was 0.3 sec; the range of r was 0.6 (mM*s)(-1) at 8.5 T and 1.4 (mM*s)(-1) at 2 T. These data suggest that Gd(DTPA)(2-) will be underestimated (and GAG overestimated) if the values for T(o)(1) and r are assumed to be those of native cartilage. (For example, in a severe case a 90% loss of GAG would be underestimated as a 70% loss.) Gd(HPDO3A) was investigated as a nonionic "control agent" and found to have relaxivity and diffusion properties that were comparable to Gd(DTPA)(2-) (r(Gd(HPDO3A))/r(Gd(DTPA)) approximately 1; D(Gd(HPDO3A))/D(Gd(DTPA)) approximately 0.85). Since Gd(HPDO3A) distributes uniformly through cartilage (independent of GAG), the distribution of T(1) with Gd(HPDO3A) can be used as a surrogate measure of variations in T(o)(1) and r, if present. From the perspective of transport, if Gd(HPDO3A) has fully penetrated the cartilage, Gd(DTPA)(2-) would have in the same time frame. Therefore, the data confirm the efficacy of using Gd(HPDO3A) as a "control agent" for dGEMRIC.

PubMed Disclaimer

Publication types

LinkOut - more resources