Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Dec;83(Pt 12):3075-3084.
doi: 10.1099/0022-1317-83-12-3075.

Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site

Affiliations

Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site

Afjal Hossain Khan et al. J Gen Virol. 2002 Dec.

Abstract

In this study, the complete genomic sequence of chikungunya virus (CHIK; S27 African prototype) was determined and the presence of an internal polyadenylation [I-poly(A)] site was confirmed within the 3' non-translated region (NTR) of this strain. The complete genome was 11805 nucleotides in length, excluding the 5' cap nucleotide, an I-poly(A) tract and the 3' poly(A) tail. It comprised two long open reading frames that encoded the non-structural (2474 amino acids) and structural polyproteins (1244 amino acids). The genetic location of the non-structural and structural proteins was predicted by comparing the deduced amino acid sequences with the known cleavage sites of other alphaviruses, located at the C-terminal region of their virus-encoded proteins. In addition, predicted secondary structures were identified within the 5' NTR and repeated sequence elements (RSEs) within the 3' NTR. Amino acid sequence homologies, phylogenetic analysis of non-structural and structural proteins and characteristic RSEs revealed that although CHIK is closely related to o'nyong-nyong virus, it is in fact a distinct virus. The existence of I-poly(A) fragments with different lengths (e.g. 19, 36, 43, 91, 94 and 106 adenine nucleotides) at identical initiation positions for each clone strongly suggests that the polymerase of the alphaviruses has a capacity to create poly(A) by a template-dependant mechanism such as 'polymerase slippage', as has been reported for vesicular stomatitis virus.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources