Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov-Dec;31(6):1953-62.
doi: 10.2134/jeq2002.1953.

The role of condensed organic matter in the nonlinear sorption of hydrophobic organic contaminants by a peat and sediments

Affiliations

The role of condensed organic matter in the nonlinear sorption of hydrophobic organic contaminants by a peat and sediments

Yong Ran et al. J Environ Qual. 2002 Nov-Dec.

Abstract

This study examines the effect of soil organic matter heterogeneity on equilibrium sorption and desorption of phenanthrene, naphthalene, 1,3,5-trichlorobenzene (1,3,5-TCB), and 1,2-dichlorobenzene (1,2-DCB) by soils and sediments. Two estuary sediments, a Pahokee peat (PP; Euic, hyperthermic Lithic Haplosaprist), and two subsamples (base- and acid-treated peat [TP] and acid-treated peat [FP]) of the peat were used as the sorbents. The contents of black carbon particles were quantified with a chemical extraction method. Petrographical examinations revealed the presence of the condensed soil and sediment organic matter (SOM) in Pahokee peat. The Freundlich isotherm model in two different forms was used to fit both sorption and desorption data. The results show that the sorption and desorption isotherms are generally nonlinear and that the apparent sorption-desorption hysteresis is present for phenanthrene and TCB. Detailed analysis of sorption data for the tested sorbent-sorbate systems indicates that black carbon is probably responsible for sorption isotherm nonlinearity for the two sediments, whereas the humic substances and kerogen may play the dominant role in nonlinear sorption by the peat. This investigation suggests that the microporosity of SOM is important for the hydrophobic organic contaminant (HOC) sorption capacity on the peat.

PubMed Disclaimer

Publication types

LinkOut - more resources