Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct-Nov;37(10-11):1165-74.
doi: 10.1016/s0531-5565(02)00136-5.

Replicative senescence of human fibroblasts: the role of Ras-dependent signaling and oxidative stress

Affiliations

Replicative senescence of human fibroblasts: the role of Ras-dependent signaling and oxidative stress

Eveline Hütter et al. Exp Gerontol. 2002 Oct-Nov.

Abstract

Replicative senescence of human fibroblasts is a widely used cellular model for human aging. While it is clear that telomere erosion contributes to the development of replicative senescence, it is assumed that additional factors contribute to the senescent phenotype. The free radical theory of aging suggests that oxidative damage is a major cause of aging; furthermore, the expression of activated oncogenes, such as oncogenic Ras, can induce premature senescence in primary cells. The functional relation between the various inducers of senescence is not known. The present study was guided by the hypothesis that constitutive activation of normal, unmutated Ras may contribute to senescence-induced growth arrest in senescent human fibroblasts. When various branches of Ras-dependent signaling were investigated, constitutive activation of the Ras/Raf/MEK/ERK pathway was not observed. To evaluate the role of oxidative stress for the senescent phenotype, we also investigated stress-related protein kinases. While we found no evidence for alterations in the activity of p38, we could detect an increased activity of Jun kinase in senescent fibroblasts. We also found higher levels of reactive oxygen species (ROS) in senescent fibroblasts compared to their younger counterparts. The accumulation of ROS in senescent cells may be related to the constitutive activation of Jun kinase.

PubMed Disclaimer

MeSH terms

LinkOut - more resources