Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan;27(1):65-79.
doi: 10.1016/s0933-3657(02)00085-4.

Bagging tree classifiers for laser scanning images: a data- and simulation-based strategy

Affiliations

Bagging tree classifiers for laser scanning images: a data- and simulation-based strategy

Torsten Hothorn et al. Artif Intell Med. 2003 Jan.

Abstract

Diagnosis based on medical image data is common in medical decision making and clinical routine. We discuss a strategy to derive a classifier with good performance on clinical image data and to justify the properties of the classifier by an adapted simulation model of image data. We focus on the problem of classifying eyes as normal or glaucomatous based on 62 routine explanatory variables derived from laser scanning images of the optic nerve head. As learning sample we use a case-control study of 98 normal and 98 glaucomatous subjects matched by age and sex. Aggregating multiple unstable classifiers allows substantial reduction of misclassification error in many applications and bench mark problems. We investigate the performance of various classifiers for the clinical learning sample as well as for a simulation model of eye morphologies. Bagged classification trees (bagged-CTREE) are compared to single classification trees and linear discriminant analysis (LDA). We additionally compare three estimators of misclassification error: 10-fold cross-validation, the 0.632+ bootstrap and the out-of-bag estimate. In summary, the application of our strategy of a knowledge-based decision support shows that bagged classification trees perform best for glaucoma classification.

PubMed Disclaimer

Publication types

LinkOut - more resources