Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Feb 24;15(4):768-74.
doi: 10.1021/bi00649a007.

Conformational studies of peptide cyclo-(D-Val-L-Pro-L-Val-D-Pro]3, a cation-binding analogue of valinomycin

Conformational studies of peptide cyclo-(D-Val-L-Pro-L-Val-D-Pro]3, a cation-binding analogue of valinomycin

D G Davis et al. Biochemistry. .

Abstract

The solution conformation of cyclo-[D-Val-L-Pro-L-Val-D-Pro]3 (PV) and its alkali-metal ion complexes was investigated by proton nuclear magnetic resonance spectroscopy. It is concluded that the cation complexes of PV have S6 symmetry and are essentially isostructural with the K complex of valinomycin. In contrast to valinomycin, the Li- and Na-PV complexes are stable in methanol and have dissociation rate constants that are several orders of magnitude slower than the corresponding valinomycin complexes. Also in contrast to valinomycin, free PV exists in two different conformational states which interconvert at very slow rates (less than 1 s-1). One of these conformers has S6 symmetry and is structurally similar to that of the cation complexes. The other species, which has lower symmetry than S6, is the more stable conformer. Depending upon concentration and solvent polarity, the latter represents between 50 and 75% of the total mixture. It is proposed that PV may have a higher affinity for cations than valinomycin because of its higher potential energy in the uncomplexed state.

PubMed Disclaimer

Similar articles

Cited by

Publication types