Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Dec;122(6 Suppl):306S-309S.
doi: 10.1378/chest.122.6_suppl.306s.

Airway wall remodeling induced by occupational mineral dusts and air pollutant particles

Affiliations

Airway wall remodeling induced by occupational mineral dusts and air pollutant particles

Andrew Churg et al. Chest. 2002 Dec.

Abstract

Objectives: COPD has been reported in workers exposed to particulates, and there is increasing evidence that high levels of ambient particulate pollutants may also be associated with COPD. The studies here investigate the hypothesis that particulates, including air pollution particles, can induce airway wall fibrosis, a process that can lead to COPD.

Design: Rat tracheal explants were exposed to various occupationally encountered dusts, air pollution particles, and model air pollution particles. In some experiments, iron was loaded onto the particle surface. Gene expression and nuclear factor (NF)-kappaB activation were measured after 7 days of air culture. Adhesion to and uptake of dusts by the tracheal epithelium were also evaluated.

Results: Known fibrogenic dusts such as amosite asbestos produced increased gene expression of procollagen, transforming growth factor-beta, and platelet-derived growth factor, and increased hydroxyproline in the explants, and the addition of iron increased these effects. The addition of iron also converted nonfibrogenic TiO2 into a fibrogenic dust. Dusts with surface complexed iron activated NF-kappaB via an oxidant mechanism. However, an ultrafine TiO2 with very low iron was also fibrogenic. In separate experiments, exogenous tumor necrosis factor-alpha increased dust adhesion to, and exogenous ozone increased dust uptake by, tracheal epithelial cells.

Conclusions: Mineral dusts can directly induce fibrosis in the airway wall. Exogenous inflammatory cells and exogenous agents are not required, but they probably exaggerate the fibrogenic effects. An iron-mediated oxidant mechanism underlies the fibrogenic effects of some, but not all, of these dusts. Particle-induced airway wall fibrosis may lead to COPD.

PubMed Disclaimer

Publication types

MeSH terms