Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Dec;122(6 Suppl):314S-320S.
doi: 10.1378/chest.122.6_suppl.314s.

Oxidant-antioxidant balance in acute lung injury

Affiliations
Review

Oxidant-antioxidant balance in acute lung injury

John D Lang et al. Chest. 2002 Dec.

Abstract

ARDS is a disease process that is characterized by diffuse inflammation in the lung parenchyma. The involvement of inflammatory mediators in ARDS has been the subject of intense investigation, and oxidant-mediated tissue injury is likely to be important in the pathogenesis of ARDS. In response to various inflammatory stimuli, lung endothelial cells, alveolar cells, and airway epithelial cells, as well as activated alveolar macrophages, produce both nitric oxide and superoxide, which may react to form peroxynitrite, which can nitrate and oxidize key amino acids in various lung proteins, such as surfactant protein A, and inhibit their functions. The nitration and oxidation of a variety of crucial proteins present in the alveolar space have been shown to be associated with diminished function in vitro and also have been identified ex vivo in proteins sampled from patients with acute lung injury (ALI)/ARDS. Various enzymes and low-molecular-weight scavengers that are present in the lung tissue and alveolar lining fluid decreased the concentration of these toxic species. The purpose of this brief chapter is to review the results from various studies demonstrating increased levels of reactive oxygen-nitrogen intermediates in the alveolar spaces of patients with ALI/ARDS.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources