Mechanism of active shrinkage in mitochondria. I. Coupling between weak electrolyte fluxes
- PMID: 1247603
- DOI: 10.1016/0005-2728(76)90097-9
Mechanism of active shrinkage in mitochondria. I. Coupling between weak electrolyte fluxes
Abstract
1. A passive penetration of (NH4)2 HPO4 or of K2HPO4+nigericin occurs in respiratory-inhibited liver mitochondria. Addition of succinate at the end of the passive swelling initiates a shrinkage phase which leads to restoration of the initial mitochondrial volume. The rate and time of onset of the active shrinkage depend on the degree of stretching of the mitochondrial membrane. The rate of active shrinkage increases proportionally to the concentration of nigericin while it is strongly inhibited by valinomycin. 2. A number of SH inhibitors such as N-ethylmaleimide, p-chloromercuribenzoate, p-chloromercuriphenylsulphonate, dithiobisnitrobenzoate, exert a marked enhancing effect on the rate of shrinkage. The enhancing effect parallels titration of the phosphate carrier and inhibition of the passive phosphate efflux. In contrast, mersalyl is a powerful inhibitor of the rate of active shrinkage. The inhibition parallels that on phosphate passive efflux and requires higher mersalyl concentrations in respect to inhibition of phosphate influx. 3. The active shrinkage is discussed in terms of (a) a mechanoenzyme, (b) an electrogenic proton pump and (c) a proton-driven Pi pump.
Similar articles
-
Mechanism of active shrinkage in mitochondria. II. Coupling between strong electrolyte fluxes.Biochim Biophys Acta. 1976 Jan 15;423(1):27-41. doi: 10.1016/0005-2728(76)90098-0. Biochim Biophys Acta. 1976. PMID: 2314
-
Phosphate carrier of liver mitochondria: the reaction of its SH groups with mersalyl, 5,5'-dithio-bis-nitrobenzoate, and N-ethylmaleimide and the modulation of reactivity by the energy state of the mitochondria.J Bioenerg Biomembr. 1980 Aug;12(3-4):137-49. doi: 10.1007/BF00744679. J Bioenerg Biomembr. 1980. PMID: 7217038
-
Phosphate transport and proteins with SH groups in rat liver mitochondria.Biochimie. 1979;61(8):891-903. doi: 10.1016/s0300-9084(79)80239-4. Biochimie. 1979. PMID: 526469
-
Characterization of phosphate efflux pathways in rat liver mitochondria.Biochem J. 1983 May 15;212(2):279-88. doi: 10.1042/bj2120279. Biochem J. 1983. PMID: 6882372 Free PMC article.
-
The pathway of inorganic-phosphate efflux from isolated liver mitochondria during adenosine triphosphate hydrolysis.Biochem J. 1980 Dec 15;192(3):821-8. doi: 10.1042/bj1920821. Biochem J. 1980. PMID: 6453587 Free PMC article.
Cited by
-
Swelling and contraction of heart mitochondria suspended in ammonium phosphate.J Bioenerg Biomembr. 1978 Aug;10(3-4):75-88. doi: 10.1007/BF00743053. J Bioenerg Biomembr. 1978. PMID: 556069
-
Mitochondrial adaptation to in vivo polyunsaturated fatty acid deficiency: increase in phosphorylation efficiency.J Bioenerg Biomembr. 2001 Feb;33(1):53-61. doi: 10.1023/a:1005624707780. J Bioenerg Biomembr. 2001. PMID: 11460926
-
Mitochondrial oscillation and activation of H+/cation exchange.J Bioenerg Biomembr. 1982 Dec;14(5-6):387-403. doi: 10.1007/BF00743066. J Bioenerg Biomembr. 1982. PMID: 6298197
-
Thyroid status is a key regulator of both flux and efficiency of oxidative phosphorylation in rat hepatocytes.J Bioenerg Biomembr. 2002 Feb;34(1):55-66. doi: 10.1023/a:1013822820840. J Bioenerg Biomembr. 2002. PMID: 11860181
-
An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function.Proc Natl Acad Sci U S A. 1978 Oct;75(10):4788-92. doi: 10.1073/pnas.75.10.4788. Proc Natl Acad Sci U S A. 1978. PMID: 283393 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous