Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Feb 16;423(2):196-202.
doi: 10.1016/0005-2728(76)90178-x.

Further studies on the effect of phosphoenolpyruvate on respiration-dependent calcium transport by rat heart mitochondria

Further studies on the effect of phosphoenolpyruvate on respiration-dependent calcium transport by rat heart mitochondria

P Chudapongse. Biochim Biophys Acta. .

Abstract

Phosphoenolpyruvate was found to depress extra oxygen consumption associated with Ca2+ -induced respiratory jump by rat heart mitochondria. Addition of phosphoenolpyruvate to mitochondria which have accumulated Ca2+ in the presence of glutamate and inorganic phosphate causes the release of Ca2+ from mitochondria. The phosphoenolpyruvate-stimulated Ca2+ efflux can be observed with mitochondria loaded with low initial Ca2+ concentration (0.12 mM) in the incubation medium. Measurements of mitochondrial H+ translocation produced by addition of Ca2+ to respiring mitochondria show that phosphoenolpyruvate depresses H+ ejection and enhances H+ uptake by mitochondria. The Ca2+ -releasing effect of phosphoenolpyruvate was found to be significantly stronger than that produced by rotenone when added to mitochondria loaded with Ca2+ in the presence of glutamate and inorganic phosphate. Dithiothreitol cannot overcome the effect of phosphoenolpyruvate on mitochondrial Ca2+ transport.

PubMed Disclaimer

LinkOut - more resources