Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan;36(1):103-12.
doi: 10.1016/s0021-9290(02)00244-0.

A three-dimensional computational analysis of fluid-structure interaction in the aortic valve

Affiliations

A three-dimensional computational analysis of fluid-structure interaction in the aortic valve

J De Hart et al. J Biomech. 2003 Jan.

Abstract

Numerical analysis of the aortic valve has mainly been focused on the closing behaviour during the diastolic phase rather than the kinematic opening and closing behaviour during the systolic phase of the cardiac cycle. Moreover, the fluid-structure interaction in the aortic valve system is most frequently ignored in numerical modelling. The effect of this interaction on the valve's behaviour during systolic functioning is investigated. The large differences in material properties of fluid and structure and the finite motion of the leaflets complicate blood-valve interaction modelling. This has impeded numerical analyses of valves operating under physiological conditions. A numerical method, known as the Lagrange multiplier based fictitious domain method, is used to describe the large leaflet motion within the computational fluid domain. This method is applied to a three-dimensional finite element model of a stented aortic valve. The model provides both the mechanical behaviour of the valve and the blood flow through it. Results show that during systole the leaflets of the stented valve appear to be moving with the fluid in an essentially kinematical process governed by the fluid motion.

PubMed Disclaimer

LinkOut - more resources