Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Dec;6(6):491-8.
doi: 10.1007/s00792-002-0286-3. Epub 2002 Aug 24.

Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber

Affiliations
Comparative Study

Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber

Aharon Oren et al. Extremophiles. 2002 Dec.

Abstract

Salinibacter ruber is a red obligatory aerobic chemoorganotrophic extremely halophilic Bacterium, related to the order Cytophagales. It was isolated from saltern crystallizer ponds, and requires at least 150 g l(-1) salt for growth. The cells have an extremely high potassium content, the ratio K(+)/protein being in the same range as in halophilic Archaea of the order Halobacteriales. X-ray microanalysis in the electron microscope of cells grown in medium of 250 g l(-1) salt confirmed the high intracellular K(+)concentrations, and showed intracellular chloride to be about as high as the cation concentrations within the cells. A search for intracellular organic osmotic solutes, using (13)C-NMR and HPLC techniques, showed glutamate, glycine betaine, and N-alpha-acetyllysine to be present in low concentrations only, contributing very little to the overall osmotic balance. The results presented suggest that the extremely halophilic Bacterium Salinibacteruses a similar mode of haloadaptation to that of the Archaea of the order Halobacteriales, and does not accumulate organic osmotic solutes such as are used by all other known halophilic and halotolerant aerobic Bacteria.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources