Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Feb;35(2):148-53.

Calcification of rachitic cartilage to study matrix vesicle function

  • PMID: 1248648

Calcification of rachitic cartilage to study matrix vesicle function

H C Anderson et al. Fed Proc. 1976 Feb.

Abstract

Growth plate cartilage from rachitic rats was studied to assess the role of extra-cellular matrix vesicles in the reinstitution of calcification during healing. The concentration and distribution of matrix vesicles was found to be normal in rachitic growth plate, and although the rachitic cartilage matrix was largely uncalcified, an occasional vesicle did contain internal mineral. Matrix vesicles served as initial loci for mineralization when healing was brought about either by in vivo injection of phosphate or in vitro incubation of growth plates in a metastable calcifying solution. During in vitro calcification a distinct line of mineralization developed in the upper growth plate which was shown by electron microscopy to reflect mineralization by the vesicles. The appearance of this vesicle-associated calcification line was inhibited by preheating or repeated freezing and thawing, and by 30 minutes preincubation in deoxycholate, ethane-1-hydroxy-1,1-diphosphonate, or beryllium sulfate. Our results suggest that vesicle calcification is dependent on the structural and enzymatic integrity of the vesicle membrane. Enzymes that may well play a role in vesicle calcification are phosphatases (e. g., alkaline phosphatase, pyrophosphatase and ATPase), which are known to be concentrated in vesicle membranes.

PubMed Disclaimer

Publication types