Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Dec 10:101-102:475-84.
doi: 10.1016/s0301-4622(02)00197-7.

Investigation of viral DNA packaging using molecular mechanics models

Affiliations

Investigation of viral DNA packaging using molecular mechanics models

Javier Arsuaga et al. Biophys Chem. .

Abstract

A simple molecular mechanics model has been used to investigate optimal spool-like packing conformations of double-stranded DNA molecules in viral capsids with icosahedral symmetry. The model represents an elastic segmented chain by using one pseudoatom for each ten basepairs (roughly one turn of the DNA double helix). Force constants for the various terms in the energy function were chosen to approximate known physical properties, and a radial restraint was used to confine the DNA into a sphere with a volume corresponding to that of a typical bacteriophage capsid. When the DNA fills 90% of the spherical volume, optimal packaging is obtained for coaxially spooled models, but this result does not hold when the void volume is larger. When only 60% of the spherical volume is filled with DNA, the lowest energy structure has two layers, with a coiled core packed at an angle to an outer coaxially spooled shell. This relieves bending strain associated with tight curvature near the poles in a model with 100% coaxial spooling. Interestingly, the supercoiling density of these models is very similar to typical values observed in plasmids in bacterial cells. Potential applications of the methodology are also discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources