Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan;144(1):75-83.
doi: 10.1210/en.2002-220659.

Immunolesion of norepinephrine and epinephrine afferents to medial hypothalamus alters basal and 2-deoxy-D-glucose-induced neuropeptide Y and agouti gene-related protein messenger ribonucleic acid expression in the arcuate nucleus

Affiliations

Immunolesion of norepinephrine and epinephrine afferents to medial hypothalamus alters basal and 2-deoxy-D-glucose-induced neuropeptide Y and agouti gene-related protein messenger ribonucleic acid expression in the arcuate nucleus

G S Fraley et al. Endocrinology. 2003 Jan.

Abstract

Neuropeptide Y (NPY) and agouti gene-related protein (AGRP) are orexigenic peptides of special importance for control of food intake. In situ hybridization studies have shown that NPY and AGRP mRNAs are increased in the arcuate nucleus of the hypothalamus (ARC) by glucoprivation. Other work has shown that glucoprivation stimulates food intake by activation of hindbrain glucoreceptor cells and requires the participation of rostrally projecting norepinephrine (NE) or epinephrine (E) neurons. Here we determine the role of hindbrain catecholamine afferents in glucoprivation-induced increase in ARC NPY and AGRP gene expression. The selective NE/E immunotoxin saporin-conjugated antidopamine-beta-hydroxylase (anti-dbetah) was microinjected into the medial hypothalamus and expression of AGRP and NPY mRNA was analyzed subsequently in the ARC under basal and glucoprivic conditions using (33)P-labeled in situ hybridization. Saporin-conjugated anti-dbetah virtually eliminated dbetah-immunoreactive terminals in the ARC without causing nonspecific damage. These lesions significantly increased basal but eliminated 2-deoxy-D-glucose-induced increases in AGRP and NPY mRNA expression. Results indicate that hindbrain catecholaminergic neurons contribute to basal NPY and AGRP gene expression and mediate the responsiveness of NPY and AGRP neurons to glucose deficit. Our results also suggest that catecholamine neurons couple potent orexigenic neural circuitry within the hypothalamus with hindbrain glucose sensors that monitor brain glucose supply.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources