Ruthenium-catalyzed transfer hydrogenation of imines by propan-2-ol in benzene
- PMID: 12489225
- DOI: 10.1002/1521-3765(20020703)8:13<2955::AID-CHEM2955>3.0.CO;2-Q
Ruthenium-catalyzed transfer hydrogenation of imines by propan-2-ol in benzene
Abstract
Transfer hydrogenation of a variety of different imines to the corresponding amines by propan-2-ol in benzene catalyzed by [Ru2(CO)4(mu-H)(C4Ph4COHOCC4Ph4)] (1) has been studied. The reaction is highly efficient with turnover frequencies of over 800 per hour, and the product amines were obtained in excellent yields. A remarkable concentration dependence of propan-2-ol was observed when the reaction was run in benzene as cosolvent. An optimum was obtained at 24 equivalents of propan-2-ol to imine, and further increase of the propan-2-ol led to a dramatic decrease in rate. Also the use of polar cosolvents with 24 equivalents of propan-2-ol gave a low rate. It was found that ketimines react faster than aldimines and that electron-donating substituents on the imine increase the rate of the catalytic transfer hydrogenation. Electron-withdrawing substituents decreased the rate. An isomerization was observed with imines having an alpha-hydrogen at the N-alkyl substituent, which is in accordance with a mechanism involving a ruthenium-amine intermediate. It was demonstrated that the ruthenium-amine complex from alpha-methylbenzylamine, corresponding to the postulated intermediate, can replace 1 as catalyst in the transfer hydrogenation of imines. A primary deuterium isotope effect of kCH/CD = 2.7 +/- 0.25 was observed when 2-deuterio-propan-2-ol was used in place of propan-2-ol in the transfer hydrogenation of N-phenyl-(1-phenylethylidene)amine.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
