Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul 2;8(13):2955-61.
doi: 10.1002/1521-3765(20020703)8:13<2955::AID-CHEM2955>3.0.CO;2-Q.

Ruthenium-catalyzed transfer hydrogenation of imines by propan-2-ol in benzene

Affiliations

Ruthenium-catalyzed transfer hydrogenation of imines by propan-2-ol in benzene

Joseph S M Samec et al. Chemistry. .

Abstract

Transfer hydrogenation of a variety of different imines to the corresponding amines by propan-2-ol in benzene catalyzed by [Ru2(CO)4(mu-H)(C4Ph4COHOCC4Ph4)] (1) has been studied. The reaction is highly efficient with turnover frequencies of over 800 per hour, and the product amines were obtained in excellent yields. A remarkable concentration dependence of propan-2-ol was observed when the reaction was run in benzene as cosolvent. An optimum was obtained at 24 equivalents of propan-2-ol to imine, and further increase of the propan-2-ol led to a dramatic decrease in rate. Also the use of polar cosolvents with 24 equivalents of propan-2-ol gave a low rate. It was found that ketimines react faster than aldimines and that electron-donating substituents on the imine increase the rate of the catalytic transfer hydrogenation. Electron-withdrawing substituents decreased the rate. An isomerization was observed with imines having an alpha-hydrogen at the N-alkyl substituent, which is in accordance with a mechanism involving a ruthenium-amine intermediate. It was demonstrated that the ruthenium-amine complex from alpha-methylbenzylamine, corresponding to the postulated intermediate, can replace 1 as catalyst in the transfer hydrogenation of imines. A primary deuterium isotope effect of kCH/CD = 2.7 +/- 0.25 was observed when 2-deuterio-propan-2-ol was used in place of propan-2-ol in the transfer hydrogenation of N-phenyl-(1-phenylethylidene)amine.

PubMed Disclaimer

Publication types

LinkOut - more resources