Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep-Oct;29(2):190-9.
doi: 10.1006/bcmd.2002.0558.

Activated protein C-dependent and -independent anticoagulant activities of protein S have different structural requirements

Affiliations

Activated protein C-dependent and -independent anticoagulant activities of protein S have different structural requirements

Mary J Heeb et al. Blood Cells Mol Dis. 2002 Sep-Oct.

Abstract

Plasma protein S exhibits multiple anticoagulant activities. About 20% of protein S normally circulates in a form that is cleaved in its thrombin-sensitive region (TSR, residues 47-72) and this cleaved protein S is inactive as a cofactor for activated protein C (APC). To clarify whether the same cleavage(s) in the TSR neutralizes both APC-cofactor and APC-independent direct anticoagulant activities, protein S was treated with several proteases, and activities and cleavages were monitored. Thrombin cleaved protein S first at Arg49, which abolished protein S APC-cofactor activity, but not APC-independent activity. A slower second thrombin cleavage at Arg70 abolished the direct prothrombinase inhibitory activity of protein S and its ability to bind phospholipids. Factor Xa cleaved protein S only at Arg60 and abolished APC-cofactor activity but not APC-independent anticoagulant activity. The snake venom enzyme Protac C efficiently cleaved protein S at two sites in the TSR, which impaired both types of protein S anticoagulant activity in the presence of phospholipids. Protac C-cleaved protein S did not compete with Factor Xa for limiting phospholipid surfaces but could still inhibit prothrombinase activity in the absence of phospholipids. Thus, the APC-cofactor activity protein S is significantly more sensitive to structural changes in the TSR than is the APC-independent activity of protein S.

PubMed Disclaimer

Publication types

LinkOut - more resources