Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan;304(1):425-32.
doi: 10.1124/jpet.102.040147.

Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide

Affiliations

Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide

Kesheng Zhao et al. J Pharmacol Exp Ther. 2003 Jan.

Abstract

Oligopeptides are generally thought to have poor permeability across biological membranes. Recent studies, however, suggest significant distribution of [Dmt1]DALDA (Dmt-D-Arg-Phe-Lys-NH2; Dmt is 2',6'-dimethyltyrosine), a 3+ net charge opioid peptide, to the brain and spinal cord after subcutaneous administration. Peptide transporters (PEPT1 and PEPT2) play a major role in the uptake of di- and tripeptides across cell membranes, but their ability to transport tetrapeptides is not clear. The purpose of this study was to determine whether [Dmt1]DALDA can translocate across Caco-2 cell monolayers and whether PEPT1 plays a role in the uptake process. Our results show that [3H][Dmt1]DALDA can readily translocate across Caco-2 cells, with a permeability coefficient estimated to be 1.24 x 10(-5) cm/s. When incubated with Caco-2 cells, [3H][Dmt1]DALDA was detected in cell lysates by 5 min. The internalization of [Dmt1]DALDA was confirmed visually with a fluorescent [Dmt1]DALDA analog (H-Dmt-D-Arg-Phe-dnsDap-NH2; dnsDap is beta-dansyl-L-alpha,beta-diaminopropionic acid). The uptake of [3H][Dmt1]DALDA was concentration-dependent but temperature- and pH-independent. Treatment with diethylpyrocarbonate (DEPC) inhibited [14C]glycine-sarcosine uptake but increased [3H][Dmt1]DALDA uptake 34-fold. These findings suggest that PEPT1 is not involved in [Dmt1]DALDA internalization. [Dmt1]DALDA uptake was also observed in SH-SY5Y, human embryonic kidney 293, and CRFK cells, and was independent of whether the cells expressed opioid receptors. The efflux of [3H][Dmt1]DALDA from Caco-2 cells was temperature-dependent and was inhibited by DEPC, but was not affected by verapamil, an inhibitor of P-glycoprotein. These data show transcellular translocation of a highly polar 3+ charge tetrapeptide and suggest that [Dmt1]DALDA may not only distribute across the blood-brain barrier but also it may even have reasonable oral absorption.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources