Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2003 Jan;52(1):132-9; discussion 139.
doi: 10.1097/00006123-200301000-00017.

Near-infrared indocyanine green video angiography: a new method for intraoperative assessment of vascular flow

Affiliations
Case Reports

Near-infrared indocyanine green video angiography: a new method for intraoperative assessment of vascular flow

Andreas Raabe et al. Neurosurgery. 2003 Jan.

Abstract

Objective: We report our initial clinical experience with a new method for intraoperative blood flow assessment. The purposes of the study were to assess the use of indocyanine green (ICG) video angiography in neurovascular cases, to assess the handling and image quality, to compare the findings with postoperative angiographic results, and to evaluate the clinical value of the method in a preliminary feasibility study.

Methods: Fourteen patients with aneurysms (n = 12) or spinal (n = 1) or intracranial (n = 1) dural fistulae were included. Before and/or after aneurysm or dural fistula occlusion, ICG (25 mg) was injected intravenously. A near-infrared laser excitation light source (lambda = 780 nm) illuminated the operating field. The intravascular fluorescence of ICG (maximal lambda = 835 nm) was recorded by a nonintensified video camera, with optical filtering to block ambient and laser light for collection of only ICG-induced fluorescence.

Results: A total of 21 investigations were performed for 14 patients. For the 17 successful ICG video angiographic investigations, image quality and resolution were excellent, allowing intraoperative real-time assessment of the cerebral circulation. ICG angiographic results could be divided into arterial, capillary, and venous phases, comparable to those observed with digital subtraction angiography. In all cases, the postoperative angiographic results corresponded to the intraoperative ICG video angiographic findings. In three cases, the information provided by intraoperative ICG angiography significantly changed the surgical procedure.

Conclusion: ICG video angiography is simple and provides real-time information on the patency of arterial and venous vessels of all relevant diameters, including small and perforating arteries (<0.5 mm), and the visible aneurysm sac. It may be a useful adjunct to improve the quality of neurovascular procedures and to document the intraoperative vascular flow.

PubMed Disclaimer

MeSH terms

Substances