The endothelium as physiological source of properdin: role of wall shear stress
- PMID: 12493642
- DOI: 10.1016/s0161-5890(02)00215-8
The endothelium as physiological source of properdin: role of wall shear stress
Abstract
Properdin is a positive regulator of the alternative pathway of complement activation. It can be released by peripheral blood cells but is not synthesized in the liver and the physiological source of properdin in plasma is unknown. The endothelium is an extra-hepatic source for several complement components and shear stress can modulate their expression. The aim of this study was to analyze shear stress-exposed endothelial cells (EC) as physiological source for plasma properdin. Human umbilical vein EC (HUVEC) and human cardiac microvascular EC (HCMEC) were exposed to shear stress using a cone-and-plate apparatus and properdin expression was analyzed by RT-PCR, Northern, and Western blot. mRNA for properdin is barely detectable in untreated EC but strongly induced by laminar shear stress exposure (6 dyn/cm(2); 24 h). Properdin is induced also at the protein level and is released in the extracellular compartment. Properdin up-regulation requires a shear stress of 2-3 dyn/cm(2), is not transient, and is reversible by restoration of static conditions. Turbulent flow exposure results in two times higher induction of properdin than laminar flow exposure. The ability of endothelial cells exposed to shear stress to synthesize properdin proposes the endothelium as physiological source for plasma properdin and suggests a link between flow conditions and the modulation of the alternative pathway. Furthermore, the stronger properdin induction by turbulent flow may suggest an involvement in the pathology of atherosclerosis.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
