Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan;68(1):222-9.
doi: 10.1095/biolreprod.102.006197.

Rapid loss of Oct-4 and pluripotency in cultured rodent blastocysts and derivative cell lines

Affiliations

Rapid loss of Oct-4 and pluripotency in cultured rodent blastocysts and derivative cell lines

M Buehr et al. Biol Reprod. 2003 Jan.

Abstract

The POU transcription factor Oct-4 is essential for the pluripotent character of the mouse inner cell mass (ICM) and derivative embryonic stem (ES) cells. We analyzed the expression of Oct-4 during culture and establishment of cell lines from mouse and rat preimplantation embryos. Oct-4 was rapidly lost in primary outgrowths of the majority of cultured embryos prior to any evidence of morphological differentiation. Oct-4 persisted in only a minority of strain 129 cultures, which can go on to give ES cells. We used transgenic rats in which the dual reporter/selection marker beta-geo is under control of Oct-4 regulatory elements to investigate the effect of direct selection for Oct-4 expressing cells. Ablation of all cells occurred, consistent with complete downregulation of Oct-4. Without selection, in contrast, continuous cultures of morphologically undifferentiated cells could be derived readily from rat blastocysts and ICMs. However, these cells did not express significant Oct-4 and, although capable of differentiating into extraembryonic cell types, appeared incapable of producing fetal germ layer derivatives. Downregulation of Oct-4 appears to be a limiting factor in attempts to derive pluripotent cell lines from preimplantation embryos.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources