Functional organization of the circuits connecting the cerebral cortex and the basal ganglia: implications for the role of the basal ganglia in epilepsy
- PMID: 12495871
Functional organization of the circuits connecting the cerebral cortex and the basal ganglia: implications for the role of the basal ganglia in epilepsy
Abstract
The basal ganglia are composed of a set of forebrain structures implicated in the adaptive control of behaviour. These structures process information originating from the entire cerebral cortex, as well as from nonspecific thalamic nuclei and the amygdala. In turn, they redistribute the integrated signals toward thalamic and brainstem nuclei related to motor, premotor, prefrontal and limbic cortical areas. During the two last decades, there has been increasing experimental evidence that the basal ganglia circuitry may be part of a remote control system influencing the spread of epileptic seizures. In the present article, we review the basic principles of the functional organization of the basal ganglia and provide experimental data on the activity that is transmitted by the cerebral cortex to the input stage of the basal ganglia during absence seizures. The functional organization of the basal ganglia supports the current hypothesis that these structures can dynamically control generalized seizures through their input-output relationships.
Similar articles
-
Somatotopy in the basal ganglia: experimental and clinical evidence for segregated sensorimotor channels.Brain Res Brain Res Rev. 2005 Feb;48(1):112-28. doi: 10.1016/j.brainresrev.2004.09.008. Brain Res Brain Res Rev. 2005. PMID: 15708631 Review.
-
The control of seizures by the basal ganglia? A review of experimental data.Epileptic Disord. 2002 Dec;4 Suppl 3:S61-72. Epileptic Disord. 2002. PMID: 12495876 Review.
-
Cortico-basal ganglia-cortical circuitry in Parkinson's disease reconsidered.Exp Neurol. 2008 Jul;212(1):226-9. doi: 10.1016/j.expneurol.2008.04.001. Epub 2008 Apr 15. Exp Neurol. 2008. PMID: 18501351
-
Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits.Cereb Cortex. 2006 Jul;16(7):916-28. doi: 10.1093/cercor/bhj043. Epub 2005 Oct 5. Cereb Cortex. 2006. PMID: 16207933 Review.
-
Neural systems for control of voluntary action--a hypothesis.Adv Biophys. 1998;35:81-102. Adv Biophys. 1998. PMID: 9949766 Review.
Cited by
-
The adjustment mechanism of the spike and wave discharges in thalamic neurons: a simulation analysis.Cogn Neurodyn. 2022 Dec;16(6):1449-1460. doi: 10.1007/s11571-022-09788-0. Epub 2022 Feb 15. Cogn Neurodyn. 2022. PMID: 36408065 Free PMC article.
-
Quantitative EEG biomarkers for STXBP1-related disorders.Epilepsia. 2024 Dec;65(12):3595-3606. doi: 10.1111/epi.18154. Epub 2024 Oct 28. Epilepsia. 2024. PMID: 39463124 Free PMC article.
-
Intracellular activity of cortical and thalamic neurones during high-voltage rhythmic spike discharge in Long-Evans rats in vivo.J Physiol. 2006 Mar 1;571(Pt 2):461-76. doi: 10.1113/jphysiol.2005.100925. Epub 2006 Jan 12. J Physiol. 2006. PMID: 16410284 Free PMC article.
-
Dorsal Striatum Is Compromised by Status Epilepticus Induced in Immature Developing Animal Experimental Model of Mesial Temporal Lobe Epilepsy.Int J Mol Sci. 2025 Apr 3;26(7):3349. doi: 10.3390/ijms26073349. Int J Mol Sci. 2025. PMID: 40244181 Free PMC article.
-
Optogenetic stimulation of the dorsal striatum bidirectionally controls seizures.Proc Natl Acad Sci U S A. 2025 Apr 8;122(14):e2419178122. doi: 10.1073/pnas.2419178122. Epub 2025 Mar 31. Proc Natl Acad Sci U S A. 2025. PMID: 40163720