Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan;22(1):37-41.
doi: 10.1097/00004347-200301000-00009.

Mutational analysis of K-ras segregates ovarian serous carcinomas into two types: invasive MPSC (low-grade tumor) and conventional serous carcinoma (high-grade tumor)

Affiliations

Mutational analysis of K-ras segregates ovarian serous carcinomas into two types: invasive MPSC (low-grade tumor) and conventional serous carcinoma (high-grade tumor)

Gad Singer et al. Int J Gynecol Pathol. 2003 Jan.

Abstract

We previously proposed a dualistic model for ovarian serous carcinogenesis. One pathway involves the stepwise development of invasive micropapillary serous carcinoma (MPSC) from serous borderline tumor (atypical proliferative serous tumor) to noninvasive and then invasive MPSC. The carcinomas that develop in this fashion are characterized by low-grade nuclei and frequent K-ras mutations. They generally pursue an indolent course. In the other pathway conventional serous carcinoma (CSC) develops from the ovarian surface epithelium without what appears to be intermediate stages. These tumors display high-grade nuclei, wild-type K-ras, and are very aggressive. Some of these CSCs display micropapillary architecture and simulate invasive MPSCs. This raises the possibility that these CSCs develop from an invasive MPSC. To address this question we reviewed 31 moderately and poorly differentiated CSCs and identified 7 with morphological features of invasive MPSC. These seven tumors exhibited micropapillary architecture in at least 25% of the tumor but contained high-grade nuclei. The 31 tumors were assessed for K-ras mutations using digital polymerase chain reaction-based analysis. Despite their micropapillary architecture, all 7 CSCs with micropapillary features contained wild-type K-ras as did the other 24 pure CSCs. The results indicate that CSCs with micropapillary features are not derived from invasive MPSCs. The molecular findings also support the view that ovarian serous carcinomas should be graded as low- and high-grade tumors.

PubMed Disclaimer

Comment in

Publication types