Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul-Aug;96(4):387-97.
doi: 10.1016/s0035-9203(02)90371-8.

The seasonal pattern of dengue in endemic areas: mathematical models of mechanisms

Affiliations

The seasonal pattern of dengue in endemic areas: mathematical models of mechanisms

L M Bartley et al. Trans R Soc Trop Med Hyg. 2002 Jul-Aug.

Abstract

In dengue-endemic areas such as Thailand, there is clear seasonality in the number of reported cases of dengue virus disease. However, the roles of different entomological and biological variables in determining this pattern have not been ascertained. To investigate this, seasonally-varying parameters were introduced in a step-wise fashion into a mathematical model of the transmission dynamics of dengue viruses. The predicted prevalence of infection was then compared to observed seasonal patterns of disease. The strongest influences on the pattern of infection and its seasonal variation were duration of infectiousness of the host, vector mortality, and biting rate. However, seasonally-varying parameters such as the latent period of infection in the vector had to be incorporated into the model to generate the correct timing of peak infection prevalence. A few limiting variables usually control the prevalence of an infectious disease because small changes in their values can carry the infection beyond the threshold at which its basic reproductive number is one. It was changes in such parameters (vector biting and mortality rate) which caused seasonal prevalence, but the timing of peak prevalence was a result of time delays within the system.

PubMed Disclaimer

Publication types

LinkOut - more resources