Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar 7;278(10):7810-21.
doi: 10.1074/jbc.M209309200. Epub 2002 Dec 22.

Intravacuolar membrane lysis in Saccharomyces cerevisiae. Does vacuolar targeting of Cvt17/Aut5p affect its function?

Affiliations
Free article

Intravacuolar membrane lysis in Saccharomyces cerevisiae. Does vacuolar targeting of Cvt17/Aut5p affect its function?

Ulrike D Epple et al. J Biol Chem. .
Free article

Abstract

The integral membrane protein Cvt17/Aut5p is a putative lipase essential for intravacuolar lysis of autophagic bodies. It is localized at the endoplasmic reticulum, from which it is targeted via the multivesicular body (MVB) pathway to intravacuolar MVB vesicles. Proteinase protection experiments now demonstrate that the Aut5 amino terminus is located in the cytosol, and the carboxyl terminus is located inside the ER lumen. In contrast to procarboxypeptidase S, targeting of Cvt17/Aut5p to MVB vesicles is not blocked in cells lacking the ubiquitin ligase Tul1p or the deubiquitinating enzyme Doa4p. Also, truncation of the amino-terminal cytosolic Cvt17/Aut5p domain does not inhibit its targeting to MVB vesicles. These findings suggest that similar to Sna3p sorting of Cvt17/Aut5p to MVB vesicles is independent of ubiquitination. By fusing the ER retention/retrieval signal HDEL to the carboxyl terminus of Cvt17/Aut5p, we generated a construct that is held back at the ER. Detailed analysis of this construct suggests an essential role of vacuolar targeting of Cvt17/Aut5p for its function. Consistently, aut5Delta cells are found impaired in vacuolar degradation of autophagocytosed peroxisomes. Importantly, biochemical and morphological data further suggest involvement of Cvt17/Aut5p in disintegration of intravacuolar MVB vesicles. This points to a general function of Cvt17/Aut5p in intravacuolar membrane breakdown.

PubMed Disclaimer

Publication types

MeSH terms